Journal of Radio Electronics. eISSN 1684-1719. 2023. №12
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.12.2
Study of the edge-field effect
on the properties of plasmon modes
in a graphene microribbon
O. V. Polischuk, K. V. Mashinsky, V. V. Popov, D. V. Fateev
Kotelnikov IRE RAS, Saratov Branch
410019, Russia, Saratov, Zelenaya str., 38
The paper was received November 28 2023
Abstract. The work devoted to theoretical studies of the excitation of plasmon modes in a graphene microribbon by an incident terahertz electromagnetic wave. The problem is solved in a three-dimensional formulation taking into account edge-field effects at the ends of graphene microribbon by using the integral equation method being developed by the authors. The influence of microribbon length (for constant width of the microribbon) on the properties of the fundamental plasmon mode is studied. Criteria for choosing either simplified two-dimensional or three-dimensional electromagnetic approaches for studying the properties of plasmon modes in graphene microribbons are formulated.
Key words: plasmon, terahertz radiation, graphene.
Financing: This work was supported by Russian Science Foundation Grant No. 22-19-00611.
Corresponding author: Denis Fateev, fateevdv@yandex.ru
References
1. Bhardwaj S. et al. Numerical analysis of terahertz emissions from an ungated HEMT using full-wave hydrodynamic model //IEEE Transactions on Electron Devices. – 2016. – Т. 63. – №. 3. – С. 990-996. https://doi.org/10.1109/TED.2015.2512912
2. Grigorenko A. N., Polini M., Novoselov K.S. Graphene plasmonics //Nature photonics. – 2012. – Т. 6. – №. 11. – С. 749-758. http://dx.doi.org/10.1038/nphoton.2012.262
3. Huang S. et al. Graphene plasmonics: physics and potential applications //Nanophotonics. – 2016. – Т. 6. – №. 6. – С. 1191-1204. https://doi.org/10.1515/nanoph-2016-0126
4. Koppens F.H.L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems //Nature nanotechnology. – 2014. – Т. 9. – №. 10. – С. 780-793. http://dx.doi.org/10.1038/nnano.2014.215
5. Fateev D.V., Mashinsky K.V., Popov V.V. Terahertz plasmonic rectification in a spatially periodic graphene //Applied Physics Letters. – 2017. – Т. 110. – №. 6. https://doi.org/10.1063/1.4975829
6. Gayduchenko I. et al. Tunnel field-effect transistors for sensitive terahertz detection //Nature communications. – 2021. – Т. 12. – №. 1. – С. 543. https://doi.org/10.1038/s41467-020-20721-z
7. Davoyan A.R., Popov V.V., Nikitov S.A. Tailoring terahertz near-field enhancement via two-dimensional plasmons //Physical review letters. – 2012. – Т. 108. – №. 12. – С. 127401. http://link.aps.org/doi/10.1103/PhysRevLett.108.127401
8. Fu Z. et al. From waveguiding to spatial localization of THz waves within a plasmonic metallic grating //IEEE Journal of selected topics in quantum electronics. – 2008. – Т. 14. – №. 2. – С. 486-490. https://doi.org/10.1109/JSTQE.2008.917032
9. Dubinov A.A. et al. Terahertz surface plasmons in optically pumped graphene structures //Journal of Physics: Condensed Matter. – 2011. – Т. 23. – №. 14. – С. 145302. https://doi.org/10.1088/0953-8984/23/14/145302
10. Davoyan A.R. et al. Graphene surface emitting terahertz laser: diffusion pumping concept //Applied Physics Letters. – 2013. – Т. 103. – №. 25. https://doi.org/10.1063/1.4850522
11. Fateev D.V. et al. Terahertz lasing with weak plasmon modes in periodic graphene structures //Physical Review Applied. – 2021. – Т. 15. – №. 3. – С. 034043. https://doi.org/10.1103/PhysRevApplied.15.034043
12. Ju L. et al. Graphene plasmonics for tunable terahertz metamaterials // Nature nanotechnology. – 2011. – Т. 6. – №. 10. – С. 630-634. https://doi.org/10.1038/nnano.2011.146
13. Morozov M.Y., Popov V.V., Fateev D.V. Electrically controllable active plasmonic directional coupler of terahertz signal based on a periodical dual grating gate graphene structure //Scientific Reports. – 2021. – Т. 11. – №. 1. – С. 11431. https://doi.org/10.1038/s41598-021-90876-2
14. Svintsov D. Emission of plasmons by drifting Dirac electrons: A hallmark of hydrodynamic transport //Physical Review B. – 2019. – Т. 100. – №. 19. – С. 195428. https://doi.org/10.1103/PhysRevB.100.195428
15. Moiseenko I.M., Popov V.V., Fateev D.V. Terahertz plasmon amplification in a double-layer graphene structure with direct electric current in hydrodynamic regime //Physical Review B. – 2021. – Т. 103. – №. 19. – С. 195430. https://doi.org/10.1103/PhysRevB.103.195430
16. Zabolotnykh A.A., Volkov V.A. Interaction of gated and ungated plasmons in two-dimensional electron systems //Physical Review B. – 2019. – Т. 99. – №. 16. – С. 165304. https://doi.org/10.1103/PhysRevB.99.165304
17. Mikhailov S.A., Savostianova N.A. Microwave response of a two-dimensional electron stripe //Physical Review B. – 2005. – Т. 71. – №. 3. – С. 035320. https://doi.org/10.1103/PhysRevB.71.035320
18. Marem’yanin K.V. et al. Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate //Technical Physics Letters. – 2010. – Т. 36. – С. 365-368. https://doi.org/10.1134/S106378501004022X
19. Boubanga-Tombet S. et al. Room-temperature amplification of terahertz radiation by grating-gate graphene structures //Physical Review X. – 2020. – Т. 10. – №. 3. – С. 031004. https://doi.org/10.1103/PhysRevX.10.031004
20. Mashinsky K.V., Popov V.V., Fateev D.V. Complete electromagnetic consideration of plasmon mode excitation in graphene rectangles by incident terahertz wave // Research Square. – 2023. https://doi.org/10.21203/rs.3.rs-3639194/v1.
21. Jang M.S. et al. Tunable large resonant absorption in a midinfrared graphene Salisbury screen //Physical Review B. – 2014. – Т. 90. – №. 16. – С. 165409. https://doi.org/10.1103/PhysRevB.90.165409
22. Popov V.V. et al. The resonant terahertz response of a slot diode with a two-dimensional electron channel //Semiconductors. – 2005. – Т. 39. – С. 142-146. https://doi.org/10.1134/1.1852665
For citation:
Polischuk O.V., Mashinsky K.V., Popov V.V., Fateev D.V. Study of the edge-field effect on the properties of plasmon modes in a graphene microribbon. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.2 (In Russian)