Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.21

 

Spin waves phase comparator

 

O.Yu. Arkhipova, A.A. Matveev, A.R. Safin, S.A. Nikitov

 

Kotelnikov IRE RAS

125009, Russia, Moscow, st. Mokhovaya, 11, b. 7

 

The paper was received November 30, 2023.

 

Abstract. The principle of operation of a spin waves phase comparator, made on the basis of ferromagnetic film, is described. Mathematical model of equivalent electrical scheme is investigated. The dependence of the output voltage on the comparator on the phase difference of the input microwave signals is obtained. Micromagnetic modelling of conversion of spin waves propagating in a ferromagnetic film into an output microwave signal was carried out.

Key words: spin wave, phase comparator, ferromagnetic film, output voltage, microwave signal.

Financing: The research was carried out within the framework of the state assignment of the Kotelnikov IRE RAS.

Corresponding author: Arkhipova Olga Yuryevna, olyuar@gmail.com

 

References

1. Endoh T. et al. An overview of nonvolatile emerging memories–Spintronics for working memories //IEEE journal on emerging and selected topics in circuits and systems. – 2016. – Т. 6. – №. 2. – С. 109-119. http://doi.org/10.1109/JETCAS.2016.2547704

2. Sato N., Sekiguchi K., Nozaki Y. Electrical demonstration of spin-wave logic operation //Applied Physics Express. – 2013. – Т. 6. – №. 6. – С. 063001. http://doi.org/10.7567/APEX.6.063001

3. Kozhevnikov A. et al. Pattern recognition with magnonic holographic memory device //Applied Physics Letters. – 2015. – Т. 106. – №. 14. http://doi.org/10.1063/1.4917507

4. Khitun A. Magnonic holographic devices for special type data processing //Journal of Applied Physics. – 2013. – Т. 113. – №. 16. http://doi.org/10.1063/1.4802656

5. Ya X. et al. Interferometric properties of standing spin waves and the application to a phase comparator //Journal of applied physics. – 2015. – Т. 117. – №. 17. http://dx.doi.org/10.1063/1.4914366

6. Elliott R. S. Antenna Theory and Design. – Los Angeles: Wiley, 2003. – 624 p.

7. Balanis C. A. Antenna Theory: Analysis and Design, 4th Edition. – Hoboken: Wiley, 2016. – 1104 p.

8. Stancil D. D., Prabhakar A. Spin Waves Theory and Applications. – New York: Springer, 2009. – 355 p.

9. Demidov V. E. et al. Transformation of propagating spin-wave modes in microscopic waveguides with variable width //Physical Review B. – 2009. – Т. 79. – №. 5. – С. 054417. http://dx.doi.org/10.1103/PhysRevB.79.054417

10. Rousseau O. et al. Realization of a micrometre-scale spin-wave interferometer //Scientific reports. – 2015. – Т. 5. – №. 1. – С. 9873. http://doi.org/10.1038/srep09873

11. Fischer T. et al. Experimental prototype of a spin-wave majority gate //Applied Physics Letters. – 2017. – Т. 110. – №. 15. http://doi.org/10.1063/1.4979840

12. Costa J. D. et al. Compact tunable YIG-based RF resonators //Applied Physics Letters. – 2021. – Т. 118. – №. 16.

13. Vanderveken F. et al. Lumped circuit model for inductive antenna spin-wave transducers //Scientific Reports. – 2022. – Т. 12. – №. 1. – С. 3796. http://doi.org/10.1038/s41598-022-07625-2

14. Clayton R. P. Inductance: Loop and Partial. – Hoboken: Wiley, 2010. – 400 p.

15. Vansteenkiste A. et al. The design and verification of MuMax3 //AIP advances. – 2014. – Т. 4. – №. 10. http://doi.org/10.1063/1.4899186

16. Kalinikos B. A. Spin waves in ferromagnetic films // Soros Educational Journal. 1996. Vol. 2. – No. 5. P. 2 (In Russian)

17. Solovev P. N. et al. Micromagnetic simulation of domain structure in thin permalloy films with in-plane and perpendicular anisotropy //Physica B: Condensed Matter. – 2021. – Т. 604. – С. 412699. http://doi.org/10.1016/j.physb.2020.412699

For citation:

Arkhipova O.Yu., Matveev A.A., Safin A.R., Nikitov S.A. Spin waves phase comparator. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.21 (In Russian)