Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.5

 

Magnetite nanoparticles increase
the conductivity of azolectin bilayer
in an inhomogeneous magnetic field

 

A.A. Anosov, E.D. Borisova, I.V. Taranov, I.V. Grigoryan,
V.A. Cherepenin, G. B. Khomutov

 

Kotelnikov IRE RAS

125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received November 28, 2023.

 

Abstract. In the magnetofection method, magnetic fields and magnetic nanoparticles are used to increase the efficiency of gene delivery into cells. Magnefection enhances the introduction into cells of gene vectors with which magnetic nanoparticles are associated, due to the action of a magnetic field that holds the nanoparticles in the area of their application. It is believed that the magnetic field itself does not change the mechanism of absorption (endocytosis) of nanoparticles. Both the beneficial effect of magnetofection - delivery of the vector into the cell, and its side effect - cytotoxicity are associated with the interaction of particles with cell membranes and, in particular, with lipid bilayers. In our work, we investigated the effect of an applied stationary inhomogeneous magnetic field and spherical superparamagnetic magnetite nanoparticles with a diameter of about 4 nm on the conductivity of azolectin bilayer lipid membranes. The membranes were formed in a stationary magnetic field with a magnetic induction of up to 26 mT. The magnetic field had no effect on the conductivity of the membrane. After monitoring the membrane conductivity, magnetic nanoparticles were added to the solution surrounding the membrane. The addition was carried out on one side of the membrane so that the magnetic field attracted nanoparticles to the membrane surface. After adding nanoparticles in a magnetic field, the conductivity of the membranes increased by one to two orders of magnitude. This effect was observed for all membranes. A smooth increase in conductivity was accompanied in a number of cases (for 25% of the membranes) by the appearance of current jumps, which can be associated with the formation of through conducting pores with a radius of about 0.5 nm. The conductivity increased with increasing magnetic field gradient.

Key words: magnetofection, magnetite nanoparticles, stationary magnetic field, membrane conductivity.

Financing: the investigation was supported by a grant from the Russian Science Foundation No 23-12-00125, https://rscf.ru/project/23-12-00125/.

Corresponding author: Taranov Igor Vladimirovich, i.v.t@bk.ru

 

References

1. K.J. Widder, A.E. Senyei, D.G. Scarpelli, Magnetic Microspheres: A Model System for Site Specific Drug Delivery in Vivo, Proc. Soc. Exp. Biol. Med. 158 (1978) 141- 146. https://doi.org/10.3181/00379727-158-40158

2. N. Laurent, C. Sapet, L. Le Gourrierec, E. Bertosio, O. Zelphati, (2011). Nucleic acid delivery using magnetic nanoparticles: The Magnetofection™ technology. Therapeutic delivery, 2(4), 471-482. https://doi.org/10.4155/tde.11.12

3. M.V. Tuttolomondo, S. Municoy, M. I. A. Echazú1, L.M. López, G. S. Alvarez, (2023). Magnetic Nanoparticles for Nucleic Acid Delivery: Magnetofection, Gene Therapy and Vaccines. Magnetic Nanoparticles for Biomedical Applications, 143, 278-313. https://doi.org/10.21741/9781644902332-10

4. Plank, C., Zelphati, O., & Mykhaylyk, O. (2011). Magnetically enhanced
nucleic acid delivery. Ten years of magnetofection-progress
and prospects. Advanced drug delivery reviews, 63(14-15), 1300–1331.
https://doi.org/10.1016/j.addr.2011.08.002

5. A.A. Sizikov, M.V. Kharlamova, M.P. Nikitin, P.I. Nikitin, and E.L. Kolychev. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. Nanomaterials 2021, 11, 1078. https://doi.org/10.3390/nano11051078

6. Y.A. Koksharov, G.B. Khomutov, I.V. Taranov, Y.V. Gulyaev, S.P. Gubin Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. Journal of Communications Technology and Electronics. 2022. Vol. 67, No. 2. P. 101-116. https://doi.org/10.1134/S1064226922020073

7. Sukhorukov G.B., Antipov A.A., Voigt A., Donath E., Möhwald H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules, Macromolecular Rapid Communications, V. 22, I. 1, P. 44-46, https://doi.org/10.1002/1521-3927(20010101)22:1

8. G.B. Khomutov, V.P. Kim, K.V. Potapenkov, A.A. Parshintsev, E.S. Soldatov, N.N. Usmanov, A.M. Saletsky, A.V. Sybachin, A.A. Yaroslavov, V.A. Migulin, I.V. Taranov, V.A. Cherepenin, Y.V. Gulyaev, Langmuir monolayers and Langmuir-Blodgett films of pH-sensitive lipid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 532, 2017, P. 150-154, https://doi.org/10.1016/j.colsurfa.2017.05.070.

9. Radt B., Smith T.A., Caruso F., Optically addressable nanostructured capsules, Advanced Materials. 2004. V.16. №23-24. P. 2184.

10. Lu Z., Prouty M.D., Guo Z.et al., Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles, Langmuir. 2005. V.21. №5. P.2042., https://doi.org/10.1021/la047629q

11. D.A. Gorin, D.G. Shchukin, A.I. Mikhailov, K. Kohler, S.A. Sergeev, S.A. Portnov, I.V. Taranov, V.V. Kislov, and G.B. Sukhorukov, Effect of microwave radiation on polymer microcapsules containing inorganic nanoparticles. Tech. Phys. Lett. 32, 70–72 (2006). https://doi.org/10.1134/S1063785006010238

12. D.A. Gorin, D.G. Shchukin, Yu.A. Koksharov, S.A. Portnov, K. Köhler, I.V. Taranov, V.V. Kislov, G. B. Khomutov, H. Möhwald, and G. B. Sukhorukov, Effect of microwave irradiation on composite iron oxide nanoparticle/polymer microcapsules, Proc. SPIE 6536, Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII, 653604 (20 June 2007); https://doi.org/10.1117/12.753423

13. Yu.V. Gulyaev, V.A. Cherepenin, V.A. Vdovin, I.V. Taranov, G.B. Sukhorukov, D.A. Gorin, and G.B. Khomutov, Decapsulation of polyelectrolyte nanocomposite microcapsules by pulsed microwave effect. J. Commun. Technol. Electron. 60, 1286–1290 (2015). https://doi.org/10.1134/S1064226915110042

14. S. Huth, J. Lausier, S.W. Gersting, C. Rudolph, C. Plank, U. Welsch, J. Rosenecker, Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer, J. Gene Med. 6 (2004) 923–936 https://doi.org/10.1002/jgm.577

15. Anosov, A., Koplak, O., Smirnova, E., Borisova, E., Korepanova, E., & Derunets, A. (2022). Effect of Cobalt Ferrite Nanoparticles in a Hydrophilic Shell on the Conductance of Bilayer Lipid Membrane. Membranes, 12(11), 1106. https://doi.org/10.3390/membranes12111106

16. Mueller, P.; Rudin, D.; Tien, H.; Wescott, W.C. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 194, 979–980. https://doi.org/10.1038/194979a0

17. Anosov, A. A., Smirnova, E. Y., Korepanova, E. A., & Shogenov, I. M. (2019). The effects of SDS at subsolubilizing concentrations on the planar lipid bilayer permeability: Two kinds of current fluctuations. Chemistry and physics of lipids, 218, 10-15.

18. Smirnova, E.Y.; Anosov, A.A. Bilayer Lipid Membrane as Memcapacitance: Capacitance–Voltage Pinched Hysteresis and Negative Insertion Conductance. Membranes 2023, 13, 97. https://doi.org/10.3390/membranes13010097

19. A.E. Regazzoni, M.A. Blesa and A.J.G. Maroto, Interfacial properties of zirconium dioxide and magnetite in water, J. Colloid Interface Sci., 1983, 91, 560–570. https://doi.org/10.1016/0021-9797(83)90370-3

20. Vidojković, S.M., Rodríguez-Santiago, V., Fedkin, M.V., Wesolowski, D., & Lvov, S.N. (2011). Electrophoretic mobility of magnetite particles in high temperature water. Chemical Engineering Science, 66, 4029-4035. https://doi.org/10.1016/j.ces.2011.05.021

21. Khomutov, G.B., Kim, V.P., Koksharov, Y.A., Potapenkov, K.V., Parshintsev, A.A., Soldatov, E.S., ... & Gulyaev, Y.V. (2017). Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 26-35. https://doi.org/10.1016/j.colsurfa.2017.07.035

22. Anosov, A.A., Smirnova, E.Y., Ryleeva, E.D., Gligonov, I.A., Korepanova, E.A., & Sharakshane, A.A. (2020). Estimation of the parameters of the Smoluchowski equation describing the occurrence of pores in a bilayer lipid membrane under soft poration. The European Physical Journal E, 43, 1-9.

23. Anosov, A.A., Smirnova, E.Y., Korepanova, E.A., Kazamanov, V.A., & Derunets, A.S. (2023). Different effects of two Poloxamers (L61 and F68) on the conductance of bilayer lipid membranes. The European Physical Journal E, 46(3), 14.

24. Antonov, V.F., Smirnova, E.Y., Anosov, A.A., Norik, V.P., & Nemchenko, O.Y. (2008). PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers. Biophysics, 53, 390-395.

25. Anosov, A.A., Smirnova, E.Y., Sharakshane, A.A., Nikolayeva, E.A., & Zhdankina, Y.S. (2020). Increase in the current variance in bilayer lipid membranes near phase transition as a result of the occurrence of hydrophobic defects. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(2), 183147.

26. Anosov, A., Borisova, E., Smirnova, E., Korepanova, E., & Osipov, A. (2023). Effect of Cytochrome C on the Conductance of Asolectin Membranes and the Occurrence of Through Pores at Different pHs. Membranes, 13(3), 268.

27. Santhosh, P.B., Velikonja, A., Perutkova, Š., Gongadze, E., Kulkarni, M., Genova, J., Eleršič, K., Iglič, A., Kralj-Iglič, V., & Ulrih, N. P. (2014). Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chemistry and physics of lipids, 178, 52–62. https://doi.org/10.1016/j.chemphyslip.2013.11.009

28. Anosov, A., Astanina, P., Proskuryakov, I., Koplak, O., & Morgunov, R. (2022). Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe2O4 Nanoparticles. Langmuir, 38(47), 14517-14526.

 

For citation:

Anosov A.A., Borisova E.D., Taranov I.V., Grigoryan I.V., Cherepenin V.A., Khomutov G.B. Magnetite nanoparticles increase the conductivity of azolectin bilayer in an inhomogeneous magnetic field. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.5 (In Russian)