ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. eISSN 1684-1719. 2023. №12
Оглавление выпускаТекст статьи (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.12.6
УДК: 53.097
МАГНИТНЫЕ НАНОЧАСТИЦЫ ОКСИДОВ ЖЕЛЕЗА
В МЕДИЦИНСКОЙ РАДИОЭЛЕКТРОНИКЕ
Ю.В.Гуляев, И.В. Таранов, Г.Б. Хомутов, Ю.А. Кокшаров
ИРЭ им. В.А. Котельникова РАН
125009, Москва, ул. Моховая, 11, корп.7
Статья поступила в редакцию 27 ноября 2023 г.
Аннотация. Проведен анализ достижений и проблем медицинской радиоэлектроники и ряда смежных областей, связанных с биомедицинскими применениями магнитных наночастиц оксидов железа. Показано, что в настоящее время потенциальные возможности биомедицинских технологий в этой области не раскрыты в полной мере. Лишь в единичных случаях удалось реализовать на практике методы магнитной гипертермии и управляемой направленной доставки лекарств. Практическое использование магнитных наночастиц для диагностических целей гораздо более успешно, но здесь возникает много проблем, связанных с биосовместимостью наночастиц и неизбежными побочными эффектами. Необходимо продолжение исследований по оптимизации процессов направленной доставки и управляемого высвобождения лекарственных препаратов, методики гипертермии с использованием магнитных наночастиц. Особенно важно развивать физические радиоэлектронные методы визуализации магнитных наночастиц в живом организме и подходы, эффективно решающие одновременно несколько диагностических и терапевтических задач.
Ключевые слова: магнитные наночастицы, медицина, гипертермия, направленная доставка лекарств.
Финансирование: Работа выполнена в рамках госзадания ИРЭ им. В.А. Котельникова РАН № 075-01110-23-01.
Автор для переписки: Таранов Игорь Владимирович ivt @cplire.ru
Литература
1. Lübbe A.S., Alexiou C., Bergemann C. Clinical applications of magnetic drug targeting //Journal of Surgical Research. – 2001. – Т. 95. – №. 2. – С. 200-206.
2. Muzykantov V.R., Torchilin V. P. (ed.). Biomedical aspects of drug targeting. – Springer Science & Business Media, 2013.
3. Mozafari M.R. (ed.). Nanocarrier technologies: frontiers of nanotherapy. – Dordrecht: Springer, 2006. – С. 41-50.
4. Labhasetwar V., Leslie-Pelecky D.L. (ed.). Biomedical applications of nanotechnology. – 2007.
5. Foote R.S., Lee J.W. (ed.). Micro and Nano Technologies in Bioanalysis: Methods and Protocols. – Humana press, 2009.
6. Wen H., Park K. (ed.). Oral controlled release formulation design and drug delivery: theory to practice. – John Wiley & Sons, 2011.
7. MacEwan S.R., Chilkoti A. From composition to cure: A systems engineering approach to anticancer drug carriers //Angewandte Chemie International Edition. – 2017. – Т. 56. – №. 24. – С. 6712-6733.
8. Ventola C.L. The nanomedicine revolution: part 1: emerging concepts //Pharmacy and Therapeutics. – 2012. – Т. 37. – №. 9. – С. 512.
9. Ventola C.L. The nanomedicine revolution: part 2: current and future clinical applications //Pharmacy and Therapeutics. – 2012. – Т. 37. – №.10. – С. 582.
10. Ventola C.L. The nanomedicine revolution: part 3: regulatory and safety challenges //Pharmacy and Therapeutics. – 2012. – Т. 37. – №. 11. – С. 631.
11. Svenson S., Prud'homme R.K. (ed.). Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. – Springer Science & Business Media, 2012.
12. Chauhan V.P., Jain R.K. Strategies for advancing cancer nanomedicine //Nature materials. – 2013. – Т. 12. – №. 11. – С. 958-962.
13. Karimi Z., Karimi L., Shokrollahi H. Nano-magnetic particles used in biomedicine: Core and coating materials //Materials Science and Engineering: C. – 2013. – Т. 33. – №. 5. – С. 2465-2475.
14. Yeo Y. (ed.). Nanoparticulate drug delivery systems: strategies, technologies, and applications. – John Wiley & Sons, 2013.
15. Etheridge M.L. et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products //Nanomedicine: nanotechnology, biology and medicine. – 2013. – Т. 9. – №. 1. – С. 1-14.
16. Torchilin V.P. Nanoparticulates as drug carriers. – Imperial college press, 2006.
17. Torchilin V. (ed.). Handbook of nanobiomedical research: Fundamentals, applications, and recent developments. – 2014.
18. Park K. Controlled drug delivery systems: past forward and future back //Journal of Controlled Release. – 2014. – Т. 190. – С. 3-8.
19. Donev R. Protein and peptide nanoparticles for drug delivery. – Academic Press, 2015.
20. Tsuda A., Gehr P. (ed.). Nanoparticles in the lung: environmental exposure and drug delivery. – CRC Press, 2014.
21. Hillery A., Park K. Drug delivery: fundamentals and applications. – CRC Press, 2016.
22. Bhatia S. Natural polymer drug delivery systems: Nanoparticles, plants, and algae. – Springer, 2016.
23. Braddock M. (ed.). Nanomedicines: design, delivery and detection. – Royal society of chemistry, 2016.
24. Agotegaray M.A., Lassalle V. L. Silica-coated magnetic nanoparticles: an insight into targeted drug delivery and toxicology. – Springer, 2017.
25. Kumar P., Srivastava R. Nanomedicine for cancer therapy: from chemotherapeutic to hyperthermia-based therapy. – 2016.
26. McNeil S. E. (ed.). Characterization of nanoparticles intended for drug delivery. – New York, NY: Humana press, 2011. – Т. 697. – С. 71-82.
27. Hui Y. et al. Role of nanoparticle mechanical properties in cancer drug delivery //ACS nano. – 2019. – Т. 13. – №. 7. – С. 7410-7424.
28. Soloviev M. (ed.). Nanoparticles in biology and medicine: methods and protocols. – New York: Humana Press, 2012.
29. Shukla A. K. (ed.). Nanoparticles in medicine. – Springer Nature, 2019.
30. Lammers T. et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress //Nano-Enabled Medical Applications. – 2020. – С. 159-203.
31. Lammers T. et al. Theranostic nanomedicine //Accounts of chemical research. – 2011. – Т. 44. – №. 10. – С. 1029-1038.
32. Martins J.P. et al. The solid progress of nanomedicine //Drug delivery and translational research. – 2020. – Т. 10. – С. 726-729.
33. Muttil P., Kunda N.K. (ed.). Mucosal Delivery of Drugs and Biologics in Nanoparticles. – Cham, Switzerland : Springer, 2020.
34. Gerrard J.A., Domigan L.J. (ed.). Protein nanotechnology: protocols, instrumentation, and applications. – Humana Press, 2013.
35. Ahmad I., Ahmad S., Rumbaugh K.P. (ed.). Antibacterial drug discovery to combat MDR: Natural compounds, nanotechnology and novel synthetic sources. – Springer Nature, 2019.
36. Guarino V., Iafisco M., Spriano S. (ed.). Nanostructured biomaterials for regenerative medicine. – Woodhead Publishing, 2019.
37. Daima H.K. et al. (ed.). Nanoscience in Medicine Vol. 1. – Springer Nature, 2020. – Т. 39.
38. Siddhardha B., Dyavaiah M., Kasinathan K. (ed.). Model organisms to study biological activities and toxicity of nanoparticles. – Springer Nature, 2020.
39. Bueno J. Preclinical Evaluation of Antimicrobial Nanodrugs. – New York: Springer, 2020.
40. Richardson J.J., Caruso F. Nanomedicine toward 2040 //Nano Letters. – 2020. – Т. 20. – №. 3. – С. 1481-1482.
41. Lane L.A. Physics in nanomedicine: Phenomena governing the in vivo performance of nanoparticles //Applied Physics Reviews. – 2020. – Т. 7. – №. 1.
42. Mahfuz A. et al. Smart drug delivery nanostructured systems for cancer therapy //New trends in smart nanostructured biomaterials in health sciences. – Elsevier, 2023. – С. 3-39.
43. Mirza Z., Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges //Seminars in cancer biology. – Academic Press, 2021. – Т. 69. – С. 226-237.
44. Giersig M. et al. (ed.). Nanomaterials for application in medicine and biology. – Dordrecht : Springer, 2008. – С. 99.
45. Khomutov G. B. et al. Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles //Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2017. – Т. 532. – С. 26-35.
46. Antipina M.N., Sukhorukov G. B. Remote control over guidance and release properties of composite polyelectrolyte based capsules //Advanced drug delivery reviews. – 2011. – Т. 63. – №. 9. – С. 716-729.
47. Bawa R., Audette G. F., Rubinstein I. (ed.). Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. – CRC Press, 2016. – Т. 1.
48. Гуляев Ю.В. и др. Дистанционная декапсуляция нанокомпозитных липосом, содержащих внедренные проводящие наночастицы, при воздействии импульсного электрического поля //Радиотехника и электроника. – 2015. – Т. 60. – №. 10. – С. 1051-1051.
49. Koksharov Y.A. et al. Magnetic nanoparticles in medicine: Progress, problems, and advances //Journal of Communications Technology and Electronics. – 2022. – Т. 67. – №. 2. – С. 101-116.
50. Gorin D.A. et al. Effect of microwave irradiation on composite iron oxide nanoparticle/polymer microcapsules //Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII. – SPIE, 2007. – Т. 6536. – С. 32-41.
51. Amstad E. et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes //Nano letters. – 2011. – Т. 11. – №. 4. – С. 1664-1670.
52. Tai L.A. et al. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release //Nanotechnology. – 2009. – Т. 20. – №. 13. – С. 135101.
53. Гуляев Ю.В. и др. Активация нанокомпозитных липосомальных капсул в проводящей водной среде ультракоротким электрическим воздействием //Радиотехника и электроника. – 2021. – Т. 66. – №. 1. – С. 82-90.
54. Alonso M.J., Csaba N. S. (ed.). Nanostructured biomaterials for overcoming biological barriers. – Royal Society of Chemistry, 2012.
55. Laurent S. et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges //Expert opinion on drug delivery. – 2014. – Т. 11. – №. 9. – С. 1449-1470.
56. Bruschi M.L., de Souza Nunes G. C. Magnetic Gels in Skin Cancer Treatment: A Review of Potential Applications in Diagnostics, Drug Delivery and Hyperthermia //Pharmaceutics. – 2023. – Т. 15. – №. 4. – С. 1244.
57. Rivera D. et al. Neurosurgical Applications of Magnetic Hyperthermia Therapy //Neurosurgery Clinics. – 2023. – Т. 34. – №. 2. – С. 269-283.
58. Włodarczyk A. et al. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives //Nanomaterials. – 2022. – Т. 12. – №. 11. – С. 1807.
59. Comanescu C. Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI //Chemistry. – 2022. – Т. 4. – №. 3. – С. 872-930.
60. Chow J.C.L. Magnetic nanoparticles as contrast agents in magnetic resonance imaging and radiosensitizers in radiotherapy //Fundamentals and Industrial Applications of Magnetic Nanoparticles. – 2022. – С. 291-316.
61. Setia A. et al. Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications //Journal of Drug Delivery Science and Technology. – 2023. – С. 104295.
62. Dhar D. et al. A review of recent advances in magnetic nanoparticle-based theranostics of glioblastoma //Nanomedicine. – 2022. – Т. 17. – №. 2. – С. 107-132.
63. Ansari S. A. M. K. et al. Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system //Materials. – 2019. – Т. 12. – №. 3. – С. 465.
64. Rivera D. et al. Neurosurgical Applications of Magnetic Hyperthermia Therapy //Neurosurgery Clinics. – 2023. – Т. 34. – №. 2. – С. 269-283.
65. Rund D. Intravenous iron: do we adequately understand the short‐and long‐term risks in clinical practice? //British Journal of Haematology. – 2021. – Т. 193. – №. 3. – С. 466-480.
66. Shah M.R., Imran M., Ullah S. (ed.). Metal nanoparticles for drug delivery and diagnostic applications. – Elsevier, 2019.
67. Moghimi S.M., Peer D., Langer R. Reshaping the future of nanopharmaceuticals: ad iudicium //ACS nano. – 2011. – Т. 5. – №. 11. – С. 8454-8458.
68. Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine //Nanotheranostics. – 2023. – Т. 7. – №. 4. – С. 424.
69. Lübbe A.S. et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy //Cancer research. – 1996. – Т. 56. – №. 20. – С. 4694-4701.
70. Costoya J. et al. Controlled release nanoplatforms for three commonly used chemotherapeutics //Molecular aspects of medicine. – 2022. – Т. 83. – С. 101043.
71. Liu P., Chen G., Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives //Molecules. – 2022. – Т. 27. – №. 4. – С. 1372.
72. Nikolova M.P., Kumar E.M., Chavali M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment //Pharmaceutics. – 2022. – Т. 14. – №. 10. – С. 2195.
73. Widder K.J., Senyei A.E., Scarpelli D.G. Magnetic microspheres: a model system for site specific drug delivery in vivo //Proceedings of the Society for Experimental Biology and Medicine. – 1978. – Т. 158. – №. 2. – С. 141-146.
74. Veloso S.R.S., Andrade R.G.D., Castanheira E.M.S. Magnetoliposomes: Recent advances in the field of controlled drug delivery //Expert Opinion on Drug Delivery. – 2021. – Т. 18. – №. 10. – С. 1323-1334.
75. Chaudhry M. et al. Thermosensitive liposomes: a promising step toward localised chemotherapy //Expert Opinion on Drug Delivery. – 2022. – Т. 19. – №. 8. – С. 899-912.
76. Kolesnikova T. A. et al. Nanocomposite microcontainers with high ultrasound sensitivity //Advanced Functional Materials. – 2010. – Т. 20. – №. 7. – С. 1189-1195.
77. Son R. S. et al. Modeling a conventional electroporation pulse train: decreased pore number, cumulative calcium transport and an example of electrosensitization //IEEE Transactions on Biomedical Engineering. – 2015. – Т. 63. – №. 3. – С. 571-580.
78. Jourabchi N. et al. Irreversible electroporation (NanoKnife) in cancer treatment //Gastrointestinal Intervention. – 2014. – Т. 3. – №. 1. – С. 8-18.
79. Davalos R.V., Mir L. M., Rubinsky B. Tissue ablation with irreversible electroporation //Annals of biomedical engineering. – 2005. – Т. 33. – С. 223-231.
80. Sano M.B. et al. Bursts of bipolar microsecond pulses inhibit tumor growth //Scientific reports. – 2015. – Т. 5. – №. 1. – С. 14999.
81. Arena C.B. et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction //Biomedical engineering online. – 2011. – Т. 10. – №. 1. – С. 1-21.
82. Гуляев Ю.В. и др. Воздействие ультракоротких электрических импульсов на нанокомпозитные липосомы в водной среде //Радиотехника и электроника. – 2020. – Т. 65. – №. 2. – С. 189-196.
83. Nikitin P.I., Vetoshko P.M., Ksenevich T.I. Magnetic immunoassays //Sensor Letters. – 2007. – Т. 5. – №. 1. – С. 296-299.
84. Nikitin P.I., Vetoshko P.M. Patent of Russian Federation RU 2166751, 2000 //EP1262766 publication. – 2002.
85. Gleich B., Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles //Nature. – 2005. – Т. 435. – №. 7046. – С. 1214-1217.
86. Nikitin M.P. et al. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels //Nanoscale. – 2018. – Т. 10. – №. 24. – С. 11642-11650.
87. Szwargulski P. et al. Monitoring intracranial cerebral hemorrhage using multicontrast real-time magnetic particle imaging //ACS nano. – 2020. – Т. 14. – №. 10. – С. 13913-13923.
88. Ludewig P. et al. Magnetic particle imaging for assessment of cerebral perfusion and ischemia //Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. – 2022. – Т. 14. – №. 1. – С. e1757.
89. Thieben F. et al. Development of Optimized Magnetic Particle Imaging Tracers Utilizing Genetically Engineered Magnetosomes //International Journal on Magnetic Particle Imaging IJMPI. – 2023. – Т. 9. – №. 1 Suppl 1.
90. Mukhatov A. et al. A comprehensive review on magnetic imaging techniques for biomedical applications //Nano Select. – 2023. – Т. 4. – №. 3. – С. 213-230.
91. Gaudet J.M. et al. Magnetic theranostics: directing therapy with magnetic particle imaging (MPI) and localized hyperthermia //CANCER RESEARCH. – 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA: AMER ASSOC CANCER RESEARCH, 2021. – Т. 81. – №. 13.
Для цитирования:
Гуляев Ю.В., Таранов И.В., Хомутов Г.Б., Кокшаров Ю.А. Магнитные наночастицы оксидов железа в медицинской радиоэлектронике. // Журнал радиоэлектроники. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.6