Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.7

 

Optical properties of ultrathin Pd and Pt films
on a quartz substrate and on tungsten trioxide films

 

D.P. Kulikova, 1,2 A.S. Baburin, 1,3 A.Sh. Amiraslanov, 3 E.S. Lotkov, 1,3
I.A. Rodionov, 1,3 A.A. Pukhov, 4 A.V. Baryshev, 1 A.V. Dorofeenko 1,4,5

 

1Dukhov Research Institute of Automatics
127055, Russia, Moscow, Suschevskaya str, 22

2Faculty of Physics, M.V. Lomonosov Moscow State University
119991, Russia, Moscow, Leninskie Gory, 1

3FMN Laboratory, Bauman Moscow State Technical University
105082, Russia, Moscow, Rubtsovskaya emb., 2/18

4Institute for Theoretical and Applied Electromagnetics RAS
125412, Russia, Moscow Izhorskaya str., 13

5Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11b7

 

The paper was received October 6, 2023.

 

Abstract. Based on ellipsometry and transmission spectra, optical parameters of palladium and platinum films were determined. The Pd and Pt films had a thickness of 5 – 7 nm and were studied both on a SiO2 and WO3 substrates. Despite the extremely small thicknesses, the parameters of most films were well described by isotropic dielectric constant. An interesting feature was that films deposited directly on a SiO2 substrate had a positive (rather than negative, characteristic of a metal) real part of the effective dielectric constant, while the films deposited on WO3 exhibited metallic properties for unannealed films and properties characteristic of metal-dielectric composites for films that have been annealed (some of the films annealed at 300°C in argon retained their metallic properties).

Key words: gas sensors, optical nanostructures, gaschromic oxides, tungsten trioxide.

Financing: The study was supported by Russian Science Foundation (project no. 21-19-00138).

Corresponding author: Alexander Viktorovich Dorofeenko, adorofeenko@itae.ru

References

1. Kats M. A., Capasso F. Optical absorbers based on strong interference in ultra‐thin films // Laser & Photonics Reviews. ‒ 2016. ‒ V. 10. ‒ N 5. ‒ P. 735-749.

2. Li Z., Butun S., Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films // ACS Photonics. ‒ 2015. ‒ V. 2. ‒ N 2. ‒ P. 183-188.

3. Luhmann N., Høj D., Piller M., Kähler H., Chien M.-H., West R. G., Andersen U. L., Schmid S. Ultrathin 2 nm gold as impedance-matched absorber for infrared light // Nature communications. ‒ 2020. ‒ V. 11. ‒ N 1. ‒ P. 2161.

4. Eranna G., Joshi B., Runthala D., Gupta R. Oxide materials for development of integrated gas sensors–a comprehensive review // Critical Reviews in Solid State and Materials Sciences. ‒ 2004. ‒ V. 29. ‒ N 3-4. ‒ P. 111-188.

5. Luna-Moreno D., Monzón-Hernández D., Villatoro J., Badenes G. Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films // Sensors and Actuators B: Chemical. ‒ 2007. ‒ V. 125. ‒ N 1. ‒ P. 66-71.

6. Zhao Z., Carpenter M., Xia H., Welch D. All-optical hydrogen sensor based on a high alloy content palladium thin film // Sensors and Actuators B: Chemical. ‒ 2006. ‒ V. 113. ‒ N 1. ‒ P. 532-538.

7. Liu N., Tang M. L., Hentschel M., Giessen H., Alivisatos A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus // Nature materials. ‒ 2011. ‒ V. 10. ‒ N 8. ‒ P. 631-636.

8. Tittl A., Kremers C., Dorfmüller J., Chigrin D. N., Giessen H. Spectral shifts in optical nanoantenna-enhanced hydrogen sensors // Optical Materials Express. ‒ 2012. ‒ V. 2. ‒ N 2. ‒ P. 111-118.

9. Ameling R., Giessen H. Microcavity plasmonics: strong coupling of photonic cavities and plasmons // Laser & Photonics Reviews. ‒ 2013. ‒ V. 7. ‒ N 2. ‒ P. 141-169.

10. Sterl F., Strohfeldt N., Both S., Herkert E., Weiss T., Giessen H. Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors // ACS Sensors. ‒ 2020. ‒ V. 5. ‒ N 4. ‒ P. 917-927.

11. McCarthy S. Optical properties of ultrathin Ag films // Journal of Vacuum Science and Technology. ‒ 1976. ‒ V. 13. ‒ N 1. ‒ P. 135-138.

12. Pribil G., Johs B., Ianno N. Dielectric function of thin metal films by combined in situ transmission ellipsometry and intensity measurements // Thin Solid Films. ‒ 2004. ‒ V. 455. ‒ P. 443-449.

13. Kossoy A., Merk V., Simakov D., Leosson K., Kéna‐Cohen S., Maier S. A. Optical and structural properties of ultra‐thin gold films // Advanced Optical Materials. ‒ 2015. ‒ V. 3. ‒ N 1. ‒ P. 71-77.

14. Malureanu R., Lavrinenko A. Ultra-thin films for plasmonics: a technology overview // Nanotechnology Reviews. ‒ 2015. ‒ V. 4. ‒ N 3. ‒ P. 259-275.

15. Bi Y. G., Liu Y. F., Zhang X. L., Yin D., Wang W. Q., Feng J., Sun H. B. Ultrathin metal films as the transparent electrode in ITO‐free organic optoelectronic devices // Advanced Optical Materials. ‒ 2019. ‒ V. 7. ‒ N 6. ‒ P. 1800778.

16. Tolstoy V. P., Chernyshova I., Skryshevsky V. A. Handbook of infrared spectroscopy of ultrathin films. John Wiley & Sons, 2003.

17. Baburin A. S., Merzlikin A. M., Baryshev A. V., Ryzhikov I. A., Panfilov Y. V., Rodionov I. A. Silver-based plasmonics: golden material platform and application challenges // Optical Materials Express. ‒ 2019. ‒ V. 9. ‒ N 2. ‒ P. 611-642.

18. Kulikova D. P., Dobronosova A. A., Kornienko V. V., Nechepurenko I. A., Baburin A. S., Sergeev E. V., Lotkov E. S., Rodionov I. A., Baryshev A. V., Dorofeenko A. V. Optical properties of tungsten trioxide, palladium, and platinum thin films for functional nanostructures engineering // Optics Express. ‒ 2020. ‒ V. 28. ‒ N 21. ‒ P. 32049-32060.

19. Johnson P. B., Christy R.-W. Optical constants of the noble metals // Physical review B. ‒ 1972. V. 6. ‒ N 12. ‒ P. 4370.

20. Куликова Д. П., Шелаев А. В., Мелехина А. О., Степанов И. А., Родионов И. А., Барышев А. В. Наноструктуры Pd/PdO для детектирования водорода // Технологии электромагнитной совместимости. ‒ 2023. ‒ Т. 84. ‒ № 1. ‒ С. 43-53.

21. Werner W. S., Glantschnig K., Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals // Journal of Physical and Chemical Reference Data. ‒ 2009. ‒ V. 38. ‒ N 4. ‒ P. 1013-1092.

For citation:

Kulikova D.P., Baburin A.S., Amiraslanov A.Sh., Lotkov E.S., Rodionov I.A., Pukhov A.A., Baryshev A.V., Dorofeenko A.V. Optical properties of ultrathin Pd and Pt films on a quartz substrate and on tungsten trioxide films. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.7 (In Russian)