Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.9

 

RADIOMETRIC FEATURES of the moisture SENSING
OF TUNDRA SOILS IN THE P-BAND

 

K.V. Muzalevskiy

 

Kirensky Institute of Physics SB RAS

660036, Russia, Krasnoyarsk, Akademgorodok 50, bld. 38

 

The paper was received November 24, 2023

 

Abstract. In this paper, in the P-band (409 MHz), the features of tundra soils microwave emission are theoretically studied during the thawing of active layer. The soils in vertical section of active layer were characterized by the profiles of volumetric moisture, weight content of organic matter, and time series of physical temperature. The brightness temperature of the active layer of tundra soils was calculated based on the phenomenological model of microwave emission for a stratified non-isothermal half-space. A dielectric model that allows to calculate the real and imaginary parts of the relative complex dielectric constant of tundra soils with a high organic matter content of 35%-80%, in the temperature range from -30C to +25C was used to modeling the brightness temperature. As a result, It was shown that as the active layer of tundra soils thaws, the interference of emissivity is observed, the amplitude of which is determined by the kind of vertical profile of the organic matter content. The interference of emissivity can be neglected when the active layer thaws more than 18.5 cm. If the volumetric moisture of the thawing part of the active layer is less than (or close to) the maximum content of bound water, then interference of emissivity is not observed. Modeling showed that the average sensing depth of tundra soil moisture does not exceed 4.5 cm.

Key words: microwave radiometry, active layer, tundra soils, soil moisture.

Financing: The work was carried out within the framework of State assignment of the Institute of Physics SB RAS.

Corresponding author: Muzalevskiy Konstantin Viktorovich rsdkm@ksc.krasn.ru

References

1. Escorihuela M., Chanzy A., Wigneron J., Kerr Y. Effective soil sampling depth of the L-band radiometry: A case study // Remote Sens. Environ. – 2010. – V. 114. – №. 5. – P. 995–1001.

2. Schmugge T. Effect of soil texture on the microwave emission from soils. NASA, Goddard space flight center, Greenbelt, Maryland, TM-80632. – 1980. – 32 p.

3. Entekhabi D., Yueh S., O’Neill P., Kellogg K. SMAP Handbook. Jet Propulsion Lab., Pasadena, CA, USA. – 2014.

4. Shen X., et al. Soil Moisture Retrieval Depth of P- and L-Band Radiometry: Predictions and Observations // IEEE Transactions on Geoscience and Remote Sensing. – 2021. – V. 59. – №. 8. – P. 6814-6822.

5. Ye N. et al. Towards P-band passive microwave sensing of soil moisture // IEEE Geosci. Remote Sens. Lett. – 2021. – V. 18. – №. 3. – P. 504–508.

6. Ye N., Wu X., Walker J. P., Boopathi N., et al. Airborne P-band passive microwave soil moisture remote sensing: preliminary results // URSI Asia-Pacific Radio Science Conference, 1 Mar 2019, 8738311.

7. Brakhasi F., Walker J.P., Ye N., et al. Towards soil moisture profile estimation in the root zone using L- and P-band radiometer observations: A coherent modelling approach // Science of Remote Sensing. – 2023. – V. 7. – №. 100079.

8. Shen X., Walker J.P., Ye N., et al. Impact of random and periodic surface roughness on P- and L-band radiometry // Remote Sensing of Environment. – 2022. – V. 269. – №. 112825.

9. Shen X., Walker J.P., Ye N. et al. Evaluation of the tau-omega model over bare and wheat-covered flat and periodic soil surfaces at P- and L-band // Remote Sensing of Environment. – 2022. – V. 273. – №. 112960.

10. Muzalevskiy K. Retrieving soil moisture profiles based on multifrequency polarimetric radar backscattering observations. Theoretical case study // International Journal of Remote Sensing. – 2021. – V. 42. – №. 2. – P. 506-519.

11. Muzalevskiy К. A new method for remote sensing of moisture profiles in the arable layer at three frequencies; experimental case study // International Journal of Remote Sensing. –2021. – V. 42. – №. 7. – P. 2377-2390.

12. Du J., Kimball J. S., Moghaddam M. Theoretical Modeling and Analysis of L- and P-band Radar Backscatter Sensitivity to Soil Active Layer Dielectric Variations // Remote Sensing. – 2015. – V. 7. – №. 7. – P. 9450-9472.

13. Miller C., et al. The ABoVE L-band and P-band Airborne SAR Surveys // Earth Syst. Sci. Data Discuss. 2023. [preprint], https://doi.org/10.5194/essd-2021-172 .

14. Chen R. H. et al. Joint Retrieval of Soil Moisture and Permafrost Active Layer Thickness Using L-Band Insar and P-Band Polsar // IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA. – 2020. – P. 4606-4609.

15. Chen R. H., Bakian-Dogaheh K., Tabatabaeenejad A., Moghaddam M. Modeling and Retrieving Soil Moisture and Organic Matter Profiles in the Active Layer of Permafrost Soils From P-Band Radar Observations // IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan. – 2019. – P. 10095-10098.

16. Tabatabaeenejad A., Burgin M., Duan X., Moghaddam M. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results // IEEE Transactions on Geoscience and Remote Sensing. – 2015. – V. 53. – №. 2. – P. 645-658.

17. Chen R.H., et al. Permafrost Dynamics Observatory (PDO): 2. Joint retrieval of permafrost active layer thickness and soil moisture from L-band InSAR and P-band PolSAR // Earth and Space Science. – 2023. – V. 10. №. e2022EA002453.

18. Bakian-Dogaheh K., Chen R.H., Moghaddam M., Yi Y., Tabatabaeenejad A. ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018. ORNL DAAC, Oak Ridge, Tennessee, USA.–2020. https://doi.org/10.3334/ORNLDAAC/1759

19. Chen R. H., Michaelides R. J., Chen J., et al. ABoVE: Active layer thickness from airborne L- and P-band SAR, Alaska, 2017, version 3 [Dataset]. ORNL Distributed Active Archive Center. – 2022. https://doi.org/10.3334/ORNLDAAC/2004

20. Barreda J.E., Knudson J.A., Walker D.A., Raynolds M.K., Kade A., Munger C. Biocomplexity of patterned ground data report, Dalton Highway, 2001-2005. Alaska Geobotany Center) AGC Data Report. University of Alaska Fairbanks, Fairbanks, AK.– 2006. – 252 p. http://www. geobotany. org/library/reports/BarredaJE2006_ daltonhwy_20060301.pdf.

21. Savin I.V., Muzalevskiy K.V., Mironov V.L. A dielectric model of thawed and frozen Arctic organic soils at 435 MHz // Remote Sensing Letters.– 2022.–Vol. 13.– No. 5.–P. 452-459.

22. https://permafrost.gi.alaska.edu/site/fbd

23. Shul'gina E. M. Radioizluchenie vertikal'no neodnorodnykh sred [Emission of vertically inhomogeneously media] // Tr. Gos. geofiz. observatorii. –1975. –V. 331.– P. 64–72.

24. Brekhovskikh L. M. Waves in layered media. – Academic Press, 1976.– 520 p.

25. Gill P.E., Murray W. Algorithms for Nonlinear Least-Squares Problem // SIAM Journal on Numerical Analysis. – 1978. – V. 15. – №. 5. – P. 977-992.

For citation:

Muzalevskiy K.V. Features of radiometric sensing of tundra soils moisture in the P-band. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.9 (In Russian))