

DOI: https://doi.org/10.30898/1684-1719.2024.12.1 УДК: 621.391.01

ПРОГНОЗИРОВАНИЕ ПОМЕХОУСТОЙЧИВОСТИ СПУТНИКОВОЙ СИСТЕМЫ КОСПАС-САРСАТ НА ОСНОВЕ РЕЗУЛЬТАТОВ GPS-МОНИТОРИНГА МЕЛКОМАСШТАБНЫХ ВОЗМУЩЕНИЙ ИОНОСФЕРЫ

В.П. Пашинцев¹, В.В. Копытов¹, Д.А. Михайлов¹, И.А. Бойченко², П.А. Диптан¹ ¹Северо-Кавказский федеральный университет, 355017, г. Ставрополь, ул. Пушкина, д.1 ²Акционерное общество «Центральный научно-исследовательский институт машиностроения», 141070, г. Королёв Московской области, ул. Пионерская, д.4

Статья поступила в редакцию 20 ноября 2024 г.

Аннотация. Разработан метод прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат в условиях мелкомасштабных возмущений ионосферы на основе результатов GPS-мониторинга мелкомасштабных флуктуаций полного электронного содержания ионосферы при произвольных углах возвышения трасс спутниковой связи и навигации. В рамках данного метода разработана методика определения зависимости вероятности ошибки в системах спутниковой связи от несущей частоты и отношения сигнал/шум на входе приемника, а также флуктуаций полного электронного содержания ионосферы на навигационной трассе распространения радиоволн. На этой основе обоснованы особенности структуры построения комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат, использующей GPS-мониторинг флуктуаций полного электронного содержания ионосферы, и алгоритма его работы. Разработана аппаратно-программная реализация комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат на основе результатов GPS-мониторинга ионосферы и получены экспериментальные результаты изменения вероятности ошибочного

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №12, 2024

при заданном отношении сигнал/шум приема сигналов BO время мелкомасштабных возмущений ионосферы и увеличения индекса мерцаний принимаемых сигналов. Построены зависимости вероятности ошибочного приема сигналов в спутниковой системе Коспас-Сарсат от отношения сигнал/шум на входе приемника при индексах ионосферных мерцаний нормального уровня (для среднеширотной ионосферы), а также для среднего и сильного уровня мерцаний в условиях мелкомасштабных возмущений ионосферы. Обосновано, что для обеспечения допустимого значения вероятности ошибочного приема сигналов при образовании в течение 4 минут мелкомасштабных возмущений ионосферы, сопровождаемых повышением индекса мерцаний до среднего уровня, потребуется увеличить энергетический запас до 4,6 дБ. При действии в течение 20 секунд сильных мерцаний необходимо повысить энергетический запас в спутниковой системе Коспас-Сарсат до 13 дБ.

Ключевые слова: спутниковая связь, Коспас-Сарсат, помехоустойчивость, ионосфера, полное электронное содержание, мелкомасштабные флуктуации, GPS-мониторинг, индекс мерцаний, энергетический запас.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 24-21-00295 (https://rscf.ru/project/24-21-00295/).

Автор для переписки: Михайлов Дмитрий Александрович, mixayloff.dimaaylov@mail.ru

Введение

С конца 80-х годов XX века успешно развивается международная система поиска и слежения Коспас-Сарсат (аббревиатуры от «Космическая Система Поиска Аварийных Судов» и «Поисково-спасательное спутниковое слежение») [1, 2, 3]. Передатчик (аварийный радиобуй) в автоматическом режиме включается и осуществляет передачу цифровых сигналов с двоичной фазовой модуляцией (ФМ) на несущей частоте $f_0 \approx 406$ МГц, а приемник размещается на космическом аппарате и осуществляет обработку сигналов на борту, местоопределение радиобуя и ретрансляцию сигналов на наземную станцию приема и обработки.

Известен метод оценки помехоустойчивости спутниковой системы Коспас-Сарсат [4-6], который учитывает, что из-за относительно низкой несущей частоты $f_0 \approx 406$ МГц возмущения ионосферы могут приводить к появлению замираний (мерцаний, сцинтилляций) принимаемых сигналов. Вследствие влияния мерцаний вероятность ошибки Рош при приеме сигналов в этой спутниковой системе зависит не только от среднего значения отношения сигнал/шум (С/Ш) на входе приемника $\overline{h^2}$, но и от индекса ионосферных мерцаний S_4 . В [4-6] получены зависимости $P_{out} = \psi(\overline{h^2}, S_4)$ в спутниковой системе Коспас-Сарсат на основе расчета индекса мерцаний S_{Λ} путем экспериментального измерения статистических характеристик мощности принимаемого сигнала. Далее по графикам зависимости $P_{\text{ош}} = \psi(\overline{h^2}, S_4)$ для допустимого значения вероятности ошибки $P_{\text{ош доп}} = 10^{-3}$ определяется допустимое отношение С/Ш на входе приемника $\overline{h_{\text{доп}}^2} = \psi(S_4, P_{\text{ош доп}})$ и энергетический запас $\Delta \overline{h_{\text{доп}}^2} = \overline{h_{\text{доп}}^2} - \overline{h_{\text{доп}}^2}$ относительно величины отношения С/Ш $\overline{h_{\text{доп}}^2}$ при отсутствии мерцаний (S₄=0). Согласно [4] его величина в условиях нормальной среднеширотной ионосферы может достигать $\Delta \overline{h_{non}^2} = 6,7$ дБ.

Особенностью используемого в [4, 5] для расчета вероятности ошибки в системе Коспас-Сарсат статистического метода является то, что он обеспечивает

достаточно высокую точность оценки P_{ош}, но требует значительных временных затрат на сбор статистики. Используемое в методиках [4, 5] усреднение экспериментальных результатов измерений мощности принимаемого сигнала на интервале в 30 минут исключает возможность расчета индекса мерцаний S₄ в реальном масштабе времени. Это не позволяет осуществить обнаружение кратковременных (минутных) мелкомасштабных возмущений ионосферы, вызывающих кратковременное возрастание индекса мерцаний $S_{A}(t)$ принимаемых сигналов и вероятности их ошибочного приема $P_{om}(t)$ в спутниковой системе Коспас-Сарсат. Кроме того, в [4-6] лишь на качественном уровне обосновано, что индекс ионосферных мерцаний S₄ зависит от несущей частоты f₀ сигнала и пространственных (r) неоднородностей электронной концентрации $\Delta N(r)$ ионосферы. Однако аналитическая зависимость $S_4 = \psi(f_0, \Delta N(r))$ в методиках [4-6] не устанавливается.

В [7-9] разработан альтернативный метод получения зависимости $P_{out} = \psi(\overline{h^2}, S_4)$ для оценки помехоустойчивости систем спутниковой связи (ССС), учитывающий аналитическую зависимость $S_4 = \psi(f_0, \Delta N_T)$ индекса ионосферных мерцаний S_4 принимаемых сигналов с несущей частотой f_0 от мелкомасштабных флуктуаций полного электронного содержания (ПЭС) ионосферы $\Delta N_T \sim \Delta N(r)$ на трассе распространения радиоволн (РРВ). При этом мелкомасштабные флуктуации ПЭС ΔN_T можно измерить на основе модификации метода GPS-мониторинга ионосферы (GPS – Global Positioning System – глобальная позиционирующая система). Этот метод реализуется с помощью приемника NovAtel GPStation-6 глобальной навигационной спутниковой системы (ГНСС – GNSS). Данный приемник относится к классу приемников GISTM (GNSS Ionospheric and TEC Monitor — глобальная навигационная спутниковая система для мониторинга ионосферных сцинтилляций и полного электронного содержания) и позволяет измерять ПЭС ионосферы N_T на трассе РРВ, а

применение дополнительного программного обеспечения обеспечивает возможность измерения мелкомасштабных флуктуаций ПЭС ионосферы ΔN_{T} .

Основным недостатком метода [7, 8] является ограничение полученных результатов прогнозирования помехоустойчивости ССС допущением о равенстве углов наклона радиолинии ССС и навигационной радиолинии измерения ПЭС ($\alpha_c = \alpha_{\mu}$), что на практике являются крайне маловероятным совпадением.

Поэтому целью статьи является разработка метода прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат в условиях мелкомасштабных возмущений ионосферы на основе результатов GPS-мониторинга мелкомасштабных флуктуаций ПЭС ионосферы при произвольных углах возвышения трасс спутниковой связи и навигации ($\alpha_c \neq \alpha_{\mu}$).

1. Анализ недостатков известного метода прогнозирования помехоустойчивости ССС по результатам GPS - мониторинга ионосферы

Для детального анализа недостатков известного метода [7, 8] рассмотрим модели высотного распределения мелкомасштабных неоднородностей в ионосфере (рис. 1*a*), вертикального ($\alpha = 90^{\circ}$) трансионосферного распространения радиоволн в радиолиниях ССС и ГНСС с мерцаниями принимаемых сигналов (рис. 1*б*) и структурную схему аппаратно-программного комплекса прогнозирования (оценки) помехоустойчивости ССС (рис. 1*в*) при возмущениях ионосферы и равенстве углов возвышения космического аппарата (КА) ГНСС и КА ССС ($\alpha_{\mu} = \alpha_{c} = \alpha = 90^{\circ}$).

Рис. 1. Модели неоднородной ионосферы (*a*) и вертикального трансионосферного распространения радиоволн (*б*) и структурная схема (*в*) комплекса оценки помехоустойчивости ССС при возмущениях ионосферы.

ионосферных Причиной возникновения мерцаний являются специфические возмущения ионосферы, связанные с образованием локальных областей (с линейными размерами от единиц до сотен километров) с интенсивными мелкомасштабными (порядка 10...1000 м) неоднородностями электронной концентрации (ЭК). В дальнейшем будем называть ИХ ионосферными образованиями мелкомасштабными (МИО). При таких возмущениях распределение ЭК В слоях ионосферы (D, E. F) С мелкомасштабными неоднородностями будет описываться согласно [10-14] совокупностью (рис. 1*a*) изменения по высоте *h* ее среднего значения N(h) и пространственных ($r = (\rho, h) = (x, y, h)$) мелкомасштабных флуктуаций $\Delta N(\rho, h)$:

$$N(\rho,h) = N(h) + \Delta N(\rho,h), \quad M^{-3}.$$
(1)

При этом мелкомасштабные флуктуации $\Delta N(\rho, h)$ достигают максимальной величины на высоте $h = h_{max}$, соответствующей максимальной средней ЭК в слое *F* ионосферы $\overline{N(h)} = \overline{N(h_{max})}$. Связь между высотным распределением ЭК ионосферы N(h) (M^{-3}) и ее полным электронным содержанием N_T (M^{-2}) описывается выражением [11, 14] $N_T = \int N(h) dh$. В соответствии с (1) ПЭС на трассе распространения радиоволн от космического аппарата (КА) ГНСС или ССС с высотой орбиты h_{KA} до приемника через неоднородную ионосферу будет описываться совокупностью среднего значения $\overline{N_T}$ и пространственных мелкомасштабных флуктуаций ПЭС $\Delta N_T(\rho)$:

$$N_{T}(\rho) = \int_{0}^{h_{KA}} N(\rho, h) dh = \int_{0}^{h_{KA}} \overline{N}(h) dh + \int_{0}^{h_{KA}} \Delta N(\rho, h) dh = \overline{N_{T}} + \Delta N_{T}(\rho), \, \mathrm{M}^{-2}.$$
(2)

Заметим, что мелкомасштабные флуктуации ПЭС $\Delta N_T(\rho)$ ионосферы, как показано ниже, можно измерить по результатам передачи сигналов с КА ГНСС на двух несущих частотах (f_1, f_2) и их обработки с помощью двухчастотного (ДЧ) приемника (ПРМ) GPStation-6 и дополнительного программного обеспечения (см. рис. 1*б*).

Величина флуктуаций ПЭС ионосферы $\Delta N_T(\rho)$ определяет процесс распространения радиоволны в ССС и индекс ионосферных мерцаний S_4 принимаемых сигналов. На рис. 16 проиллюстрирован процесс PPB с несущей частотой f_0 от КА ССС через ионосферный слой с мелкомасштабными неоднородностями ЭК $\Delta N(\rho, h)$ до приемника, который сопровождается дифракционными явлениями. В результате плоский фазовый фронт волны, падающей на ионосферу, на выходе из нее будет подвержен искажениям (флуктуациям), величина которых $\Delta \phi(\rho)$ определяется мелкомасштабными флуктуациями ПЭС ионосферы (2) как [11, 14]

$$\Delta\varphi(\rho) = -\lambda_0 r_e \Delta N_T(\rho) \approx -80.8\pi \Delta N_T(\rho) / cf_0 = -(80.8\pi / cf_0) \int_0^{h_{\rm KA}} \Delta N(\rho, h) dh , \text{ pag}, \quad (3)$$

где $\lambda_0 = c / f_0 - длина$ волны; $c - скорость света в вакууме; r_e - классический радиус электрона (2,81794092·10⁻¹⁵ м); 80,8 - коэффициент, имеющий размерность м³/c².$

В соответствии с (3) среднеквадратическое отклонение (СКО) флуктуаций фазового фронта волны на выходе ионосферы $\sigma_{\varphi} = \left(\overline{\Delta \varphi^2(\rho)}\right)^{0.5}$ определяется СКО мелкомасштабных флуктуаций ПЭС ионосферы $\Delta \sigma_{N_T} = \left(\overline{\Delta N_T^2(\rho)}\right)^{0.5}$ согласно выражению [7-9, 11, 14]

$$\sigma_{\varphi} = \left(\overline{\Delta\varphi^{2}(\rho)}\right)^{0.5} = \lambda_{0} r_{e} \sigma_{\Delta N_{T}} \left(\overline{\Delta N_{T}^{2}(\rho)}\right)^{0.5} = \lambda_{0} r_{e} \sigma_{\Delta N_{T}} \approx 80, 8\pi \sigma_{\Delta N_{T}} / c f_{0} .$$
(4)

Интерференция отдельных участков (ρ) фазового фронта волны (3) за ионосферой в свободном пространстве до точки приема обуславливает перераспределение ее амплитуды вдоль волнового фронта (иллюстрируется на рис. 1*б* в виде изменения его толщины). Эти дифракционные процессы приводит к случайному изменению мощности принимаемого сигнала, то есть к его мерцаниям (или замираниям, сцинтилляциям). Последние характеризуются индексом мерцаний *S*₄, величина которого зависит от СКО флуктуаций фазового фронта волны на выходе ионосферы σ_{φ} (4) и СКО мелкомасштабных флуктуаций ПЭС ионосферы $\Delta \sigma_{N_T}$ как [15, 16]

$$S_4 = \sqrt{1 - \exp(-2\sigma_{\varphi}^2)} = \sqrt{1 - \exp(-2(80, 8\pi\sigma_{\Delta N_T} / cf_0)^2)} .$$
 (5)

Величина индекса ионосферных мерцаний $S_4 \sim \sigma_{\Delta N_T} / f_0$ принимаемых сигналов и среднего отношения сигнал/шум (С/Ш) на входе приемника $\overline{h^2}$ определяет вероятность ошибочного приема сигналов в каналах ССС с аддитивным гауссовым шумом и замираниями, характеризуемыми m – распределением Накагами: $P_{out} = \psi(\overline{h^2}, m)$. Например, помехоустойчивость некогерентного приема в ССС сигналов с относительной фазовой манипуляцией (ОФМ) с учетом известной [4, 5, 11] взаимосвязи $m = S_4^{-2}$ описывается как [17, 18]

$$P_{\rm out} = \frac{1}{2} \left(\frac{m}{m + \overline{h^2}} \right)^m = \frac{1}{2} \left(\frac{S_4^{-2}}{S_4^{-2} + \overline{h^2}} \right)^{S_4^{-2}}.$$
 (6)

Согласно выражениям (5, 6), увеличение СКО мелкомасштабных флуктуаций ПЭС $\Delta \sigma_{N_T}$ ионосферы при ее возмущениях и понижение несущей

частоты f_0 обуславливает возрастание индекса ионосферных мерцаний принимаемых сигналов ССС $S_4 \sim \sigma_{\Delta N_T} / f_0$, что вызовет увеличение вероятности ошибочного приема сигналов: $P_{\text{ош}} \sim S_4 \sim \sigma_{\Delta N_T} / f_0$.

На рис. 1*в* представлена известная [7, 8] структурная схема аппаратнопрограммного комплекса (АПК) оценки помехоустойчивости $P_{out} = \psi(\overline{h^2}, S_4)$ приема сигналов ССС на основе расчета среднеквадратичного отклонения мелкомасштабных флуктуаций ПЭС ионосферы ($\sigma_{\Delta N_T}$) и индекса мерцаний (S_4) при условии равенства углов возвышения КА ГНСС и КА ССС ($\alpha_{\rm H} = \alpha_{\rm c} = \alpha = 90^{\circ}$). Схема АПК состоит из 2 основных частей:

1) аппаратной части, включающей двухчастотный (ДЧ) приемник (ПРМ) GPStation-6, осуществляющий измерение основных параметров сигналов ГНСС: псевдодальностей (R'_1 , R'_2) и псевдофаз (φ'_1 , φ'_2) до КА ГНСС на двух несущих частотах f_1 и f_2 ;

2) блока дополнительного программного обеспечения (ПО), в котором осуществляется кодово-фазовые измерения ПЭС ионосферы (N_T) с частотой дискретизации 50 Гц, цифровая фильтрация из временных рядов ПЭС мелкомасштабных флуктуаций ПЭС ионосферы ΔN_T , расчет их СКО $\sigma_{\Delta N_T}$, а также индекса ионосферных мерцаний $S_4 \sim \sigma_{\Delta N_T}/f_0$ принимаемых сигналов на несущей частоте ССС (f_0) и вероятности их ошибочного приема $P_{out} = \psi(\overline{h^2}, S_4)$.

В блоке расчета ПЭС по кодово-фазовым измерениям ПЭС ионосферы на основе результатов измерений приемником GPStation-6 псевдодальностей (R'_1, R'_2) и псевдофаз (φ'_1, φ'_2) до КА ГНСС на двух несущих частотах (f_1, f_2) в каждый момент отсчета времени $(t = i\tau_n, rдe \ i = 0...n)$ с частотой дискретизации $f_n = 1/\tau_n = 50$ Гц вычисляется ПЭС ионосферы на вертикальной $(\alpha_n = \alpha = 90^\circ)$ трассе PPB как [8, 19, 20]

$$N_{T} = N_{T}(\alpha = 90^{\circ}) = \frac{1}{40,4} \left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \right) \left(\lambda_{2} \varphi_{2}' - \lambda_{1} \varphi_{1}' \right) - \delta_{H}' = \overline{N_{T}} + \Delta N_{T},$$
(7)

где $\lambda_i = c/f_i$ — длина волны на соответствующей частоте (f_1, f_2) , а $\delta'_{\mu} = \psi(f_1, f_2, R'_1, R'_2, \varphi'_1, \varphi'_2, \alpha)$ — поправка для разрешения неоднозначности фазовых измерений. Она характеризует среднее смещение $\delta'_{\mu} = \overline{N_T} - \overline{N_{T(\phi)}}$ результатов расчета ПЭС на основе неоднозначных фазовых измерений $\overline{N}_{T(\phi)}$ относительно его истинного среднего значения $\overline{N_T}$ (учитывающего крупно- и среднемасштабные неоднородности ЭК); ΔN_T — мелкомасштабные флуктуации ПЭС ионосферы.

В цифровом фильтре Баттерворта 6-го порядка, параметры которого описаны в [8, 19], из полученных рядов ПЭС (7) выделяются мелкомасштабные флуктуации ПЭС как

$$\Delta N_T = \sum_{k=0}^{6} b_k N_{Ti-k} - \sum_{k=1}^{6} a_k \Delta N_{Ti-k} , \qquad (8)$$

где *i* – индекс в последовательности временных отсчетов ($t = i\tau_{\pi}$), a_k, b_k – коэффициенты цифрового фильтра, обеспечивающие требуемую полосу пропускания от 1 Гц до 10 Гц при частоте дискретизации входных данных $f_{\pi} = 50$ Гц.

В блоке расчета СКО мелкомасштабных флуктуаций ПЭС ионосферы на основе (7, 8) вычисляются значения $\sigma_{\Delta N_{T}}$ как [8, 19]

$$\sigma_{\Delta N_T} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(\Delta N_{Ti} - \overline{\Delta N}_T \right)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n \Delta N_{Ti}^2} , \qquad (9)$$

где n = 50 число отчетов, при частоте дискретизации $f_{\pi} = 1/\tau_{\pi} = 50$ Гц.

Результаты расчета СКО мелкомасштабных флуктуаций ПЭС ионосферы $\sigma_{\Delta N_r}$ согласно (9) на трассе от КА ГНСС до двухчастотного приемника GPStation-6 под углом $\alpha_{\mu} = 90^{\circ}$ будут соответствовать результатам расчета СКО мелкомасштабных флуктуаций ПЭС ионосферы $\sigma_{\Delta N_r}$ на трассе от КА ССС до приемника GPStation-6 при таком же угле возвышения $\alpha_c = \alpha_{\mu} = \alpha = 90^{\circ}$.

Благодаря равенству

$$\sigma_{\Delta N_{T}}(\alpha_{c} = 90^{\circ}) = \sigma_{\Delta N_{T}}(\alpha_{H} = 90^{\circ}) = \sigma_{\Delta N_{T}}$$
(10)

обеспечивается возможность расчета индекса ионосферных мерцаний принимаемых сигналов на несущей частоте ССС (f_0) согласно зависимости (5) $S_4 \sim \sigma_{\Delta N_T} / f_0$ и вероятности их ошибочного приема согласно зависимости (6) $P_{out} = \psi(\overline{h^2}, S_4) = \psi(\overline{h^2}, \sigma_{\Delta N_T}, f_0)$.

Поскольку в структурной схеме комплекса оценки помехоустойчивости ССС (рис. 1*в*) в каждый момент отсчета времени вычисляются согласно (7) значения ПЭС ионосферы на вертикальной трассе РРВ (N_T), то по мере накопления этих дискретных значений формируется временной ряд $N_T(t)$. Вслед за ним согласно (8), (9), (5) и (6) будут формироваться временные ряды мелкомасштабных флуктуаций ПЭС ионосферы $\Delta N_T(t)$, их СКО $\sigma_{\Delta N_T}(t)$, а также индекса ионосферных мерцаний $S_4(t) \sim \sigma_{\Delta N_T}(t)/f_0$ принимаемых сигналов на несущей частоте ССС (f_0) и вероятности их ошибочного приема $P_{out}(t) = \psi(\overline{h^2}, S_4(t)) = \psi(\overline{h^2}, \sigma_{\Delta N_T}(t), f_0)$.

Основным недостатком метода [7, 8] является ограничение полученных результатов прогнозирования допущением (см рис. 1) о равенстве углов наклона радиолинии ССС и навигационной радиолинии ($\alpha_c = \alpha_{\mu}$), тогда как на практике угол наклона РРВ в навигационной радиолинии α_{μ} , которая используется для измерения флуктуаций ПЭС ионосферы $\sigma_{\Delta N_T}(\alpha_{\mu})$, отличается от угла наклона РРВ в спутниковой радиолинии $\alpha_c \neq \alpha_{\mu}$, в которой прогнозируется помехоустойчивость ССС, т.е. зависимость $P_{om}(\alpha_c) = \psi(\sigma_{\Delta N_T}(\alpha_{\mu}), f_0, \overline{h^2})$.

Далее следует учесть, что в отличие от рассматриваемой радиолинии ССС (рис.1*б*), где передатчик размещен на космическом аппарате ССС, а приемник – на Земле, в спутниковой системе Коспас-Сарсат (ССК-С) передатчик (радиобуй) размещен на море (или Земле), а приемник – борту КА ССК-С. Поэтому структурная схема комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат основе GPS-мониторинга

мелкомасштабных флуктуаций ПЭС и алгоритм ее работы будет иметь свои особенности по сравнению с ССС

На основе этого алгоритма открывается возможность разработки аппаратно-программной реализации комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат по результатам GPS-мониторинга ионосферы в условиях мелкомасштабных возмущений и получения экспериментальной зависимости ее изменения во времени: $P_{\text{ош}}(\alpha_{c}(t)) = \psi \left(\sigma_{\Delta N_{T}}(\alpha_{H}(t)), \alpha_{c}(t), f_{0}, \overline{h^{2}} \right).$

По этой зависимости можно оценить энергетический запас $\Delta h_{\text{доп}}^2$, необходимый для обеспечения в спутниковой системе Коспас-Сарсат допустимой вероятности ошибки при различных состояниях ионосферы $\sigma_{\Delta N_T}(\alpha_{_{\rm H}})$:

$$\Delta h_{\text{доп}}^2 = \Psi \left(S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0), P_{\text{ош доп}}) \right).$$

Таким образом, представляется актуальной задача разработки метода прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат в условиях мелкомасштабных возмущений ионосферы на основе результатов GPS-мониторинга мелкомасштабных флуктуаций ПЭС ионосферы при произвольных углах возвышения трасс спутниковой связи и навигации ($\alpha_c \neq \alpha_{\mu}$).

Для достижения поставленной цели необходимо получить решение следующих задач:

1) разработки методики определения зависимости вероятности ошибки в ССС от несущей частоты f_0 и отношения сигнал/шум h^2 на входе приемника и СКО флуктуаций ПЭС ионосферы на навигационной трассе РРВ $\sigma_{\Delta N_T}(\alpha_{_{\rm H}})$, т.е. зависимости вида

$$P_{\rm out}(\alpha_{\rm c}) = \psi \left(\sigma_{\Delta N_T}(\alpha_{\rm H}), f_0, \overline{h^2} \right); \tag{11}$$

2) обоснования особенностей структуры построения комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат основе GPS-мониторинга мелкомасштабных флуктуаций ПЭС и алгоритма ее работы по сравнению с ССС;

3) разработки аппаратно-программной реализации комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат на основе результатов GPS-мониторинга ионосферы и получения экспериментальных зависимостей ее изменений во время мелкомасштабных возмущений:

$$P_{\text{our}}(\alpha_{c}(t)) = \psi\left(\sigma_{\Delta N_{T}}(\alpha_{H}(t)), \alpha_{c}(t), f_{0}, \overline{h^{2}}\right);$$
(12)

 4) оценки энергетического запаса Δh²_{доп}, необходимого для обеспечения в спутниковой системе Коспас-Сарсат допустимой вероятности ошибки при различных состояниях ионосферы:

$$\Delta h_{\text{доп}}^2 = \psi \Big(S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0), P_{\text{ош доп}}) \Big).$$
(13)

2. Методика определения зависимости вероятности ошибки в ССС от флуктуаций ПЭС ионосферы на навигационной трассе РРВ

На рис. 2 представлена структурная схема АПК прогнозирования помехоустойчивости ССС в условиях мелкомасштабных возмущений ионосферы, когда (в отличие от рис. 1) ДЧ ПРМ GPStation-6 разнесен в пространстве относительно ПРМ ССС. При этом трасса КА ГНСС – ДЧ ПРМ GPStation-6 на несущих частотах f_1, f_2 проходит через мелкомасштабное ионосферное образование (МИО) под углом $\alpha_c < 90^\circ$, а трасса КА ССС – ПРМ ССС на отличной частоте $f_0 \neq (f_1, f_2)$ проходит через это же МИО под произвольным углом $\alpha_c \neq \alpha_n$.

Рис. 1. Структурная схема комплекса прогнозирования помехоустойчивости ССС на основе GPS-мониторинга мелкомасштабных флуктуаций ПЭС ионосферы при произвольных углах возвышения трасс спутниковой связи и навигации (α_c ≠ α_µ).

В отличие от ПЭС при вертикальном РРВ через ионосферу (2), при наклонной навигационной ($\alpha_{\rm H} < 90^{\circ}$) трассе РРВ (т.е. от КА ГНСС до ДЧ ПРМ GPStation-6) оно будет описываться выражением вида [21, 22]

$$N_{\rm T}(\rho,\alpha_{\rm H}) = \int_{0}^{h_{\rm KA}} N(\rho,h) dl(\alpha_{\rm H}), \qquad (14)$$

где $dl(\alpha_{H})$ – элемент наклонного пути PPB через ионосферу под углом α_{H} .

Согласно [22] при достаточно большом угле наклона трассы относительно горизонта ($\alpha_{\mu} \ge 30^{\circ}$) величина $dl(\alpha_{\mu})$ связана простой зависимостью с элементом вертикального пути *dh* трансионосферного PPB: $dl(\alpha_{\mu}) = dh \csc \alpha_{\mu}$. С учетом последнего, выражение (14) при наличии мелкомасштабных неоднородностей ЭК в ионосфере (1) $N(\rho,h) = \overline{N(h)} + \Delta N(\rho,h)$ можно записать в следующем виде:

$$N_{\rm T}(\rho,\alpha_{\rm H}) = \csc \alpha_{\rm H} \int_{0}^{h_{\rm KA}} N(\rho,h) dh = N_{\rm T}(\rho) \csc \alpha_{\rm H} =$$

$$= \csc \alpha_{\rm H} \int_{0}^{h_{\rm KA}} \overline{N}(h) dh + \csc \alpha_{\rm H} \int_{0}^{h_{\rm KA}} \Delta N(\rho,h) dh = \overline{N_{\rm T}}(\alpha_{\rm H}) + \Delta N_{\rm T}(\rho,\alpha_{\rm H}), \qquad (15)$$

где

$$\overline{N_{\rm T}}(\alpha_{\rm H}) = \overline{N_{\rm T}} \operatorname{cosec} \alpha_{\rm H}; \quad \Delta N_{\rm T}(\rho, \alpha_{\rm H}) = \Delta N_{\rm T}(\rho) \operatorname{cosec} \alpha_{\rm H}$$
(16), (17)

среднее значение и мелкомасштабные флуктуации ПЭС ионосферы при наклонном РРВ под углом *а*_н.

Согласно (15-17) ПЭС ионосферы при наклонном РРВ $N_{\rm T}(\rho, \alpha_{\rm H}) = N_{\rm T}(\rho)$ соsес $\alpha_{\rm H}$ и его регулярная $\overline{N_{\rm T}}(\alpha_{\rm H}) = \overline{N_{\rm T}}$ соsес $\alpha_{\rm H}$ и флуктуационная $\Delta N_{\rm T}(\rho, \alpha_{\rm H}) = \Delta N_{\rm T}(\rho)$ соsес $\alpha_{\rm H}$ составляющие будут в соsес $\alpha_{\rm H} \ge 1$ раз больше, чем их значения при вертикальном ($\alpha_{\rm H} = 90^{\circ}$) РРВ, когда согласно (2) $N_T(\rho) = \overline{N_T} + \Delta N_T(\rho)$. Очевидно, что увеличение ПЭС ионосферы на трассе РРВ приведет к увеличению результатов измерений псевдодальностей ($R'_1(\alpha_{\rm H}), R'_2(\alpha_{\rm H})$) и псевдофаз ($\varphi'_1(\alpha_{\rm H}), \varphi'_2(\alpha_{\rm H})$) до КА ГНСС на несущих частотах f_1 и f_2 по сравнению с вертикальным РРВ (R'_1, R'_2 и φ'_1, φ'_2).

В блоке расчета ПЭС по кодово-фазовым измерениям (рис. 2) на основе результатов измерений приемником GPStation-6 псевдодальностей и псевдофаз ($R'_1(\alpha_{_{\rm H}}), R'_2(\alpha_{_{\rm H}}), \varphi'_1(\alpha_{_{\rm H}}), \varphi'_2(\alpha_{_{\rm H}}))$ до КА ГНСС в каждый момент отсчета времени вычисляется ПЭС ионосферы на наклонной ($\alpha_{_{\rm H}} < 90^\circ$) трассе PPB аналогично (7):

$$N_{T}(\alpha_{\rm H}) = \frac{1}{40,4} \left(\frac{f_{1}^{2} f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \right) \left(\lambda_{2} \varphi_{2}'(\alpha_{\rm H}) - \lambda_{1} \varphi_{1}'(\alpha_{\rm H}) \right) - \delta_{\rm H}'(\alpha_{\rm H}) =$$

$$= \overline{N_{T}}(\alpha_{\rm H}) + \Delta N_{T}(\alpha_{\rm H}) = \overline{N_{T}} \operatorname{cosec} \alpha_{\rm H} + \Delta N_{T} \operatorname{cosec} \alpha_{\rm H}.$$
(18)

В цифровом фильтре Баттерворта 6-го порядка из полученных рядов ПЭС (18) выделяются мелкомасштабные флуктуации ПЭС аналогично (8):

$$\Delta N_T(\alpha_{\rm H}) = \sum_{k=0}^6 b_k N_{Ti-k}(\alpha_{\rm H}) - \sum_{k=1}^6 a_k \Delta N_{Ti-k}(\alpha_{\rm H}) = \Delta N_T \operatorname{cosec} \alpha_{\rm H}.$$
 (19)

Представляется очевидным, что при наклонном PPB от KA CCC до ПРМ CCC на связной трассе под углом $\alpha_{c} < 90^{\circ}$ (см. рис. 2) мелкомасштабные

флуктуации ПЭС будут больше, чем при вертикальном ($\alpha_c = \alpha = 90^\circ$) РРВ и описываются выражением, аналогичным (17):

$$\Delta N_{\rm T}(\rho,\alpha_{\rm c}) = \Delta N_{\rm T}(\rho) \, \csc \alpha_{\rm c} \,. \tag{20}$$

Для определения мелкомасштабных флуктуаций ПЭС на вертикальной трассе $\Delta N_{\rm T}(\rho)$ в выражении (20) можно использовать результаты расчета мелкомасштабных флуктуаций ПЭС на наклонной навигационной трассе (17) от КА ГНСС до ДЧ ПРМ GPStation-6 под углом α_{μ} :

$$\Delta N_{\rm T}(\rho) = \Delta N_{\rm T}(\rho, \alpha_{\rm H}) / \operatorname{cosec} \alpha_{\rm H} = \Delta N_{\rm T}(\rho, \alpha_{\rm H}) \sin \alpha_{\rm H}, \qquad (21)$$

поскольку значение угла α_{μ} в приемнике GPStation-6 известно в каждый момент времени из навигационных сообщений.

Поэтому в блоке расчета флуктуаций вертикального ($\alpha = 90^{\circ}$) ПЭС ионосферы (рис. 2) на основе рядов ПЭС ионосферы на навигационной трассе РРВ (19) под углом $\alpha_{\mu} < 90^{\circ}$ и знания текущего значения этого угла α_{μ} в приемнике GPStation-6 результаты оценки ΔN_{T} можно получить по аналогии (8) как

$$\Delta N_T = \sum_{k=0}^6 b_k N_{Ti-k}(\alpha_{\rm H}) \sin \alpha_{\rm H} - \sum_{k=1}^6 a_k N_{Ti-k}(\alpha_{\rm H}) \sin \alpha_{\rm H} = \Delta N_{\rm T}(\alpha_{\rm H}) \sin \alpha_{\rm H}.$$
(22)

Следует отметить, что значение угла α_{c} наклона связной трассы РРВ от в ПРМ ССС известно в каждый момент времени из эфемеридных сообщений. Поэтому в соответствии с выражением (20) $\Delta N_{T}(\rho, \alpha_{c}) = \Delta N_{T}(\rho) \csc \alpha_{c}$ в блоке пересчета флуктуаций вертикального ($\alpha = 90^{\circ}$) ПЭС ионосферы (22) $\Delta N_{T} = \Delta N_{T}(\alpha_{H}) \sin \alpha_{H}$ в наклонные флуктуации ПЭС ионосферы под углом $\alpha_{c} < 90^{\circ}$ последние определяются согласно выражению

$$\Delta N_{\rm T}(\alpha_{\rm c}) = \Delta N_{\rm T} \operatorname{cosec} \alpha_{\rm c} = (\Delta N_{\rm T}(\alpha_{\rm H}) \sin \alpha_{\rm H}) \operatorname{cosec} \alpha_{\rm c} = \Delta N_{\rm T}(\alpha_{\rm H}) \sin \alpha_{\rm H} / \sin \alpha_{\rm c} .$$
(23)

Далее на основе (23) в блоке расчета СКО мелкомасштабных флуктуаций ПЭС ионосферы вычисляются его значения аналогично (9)

$$\sigma_{\Delta N_T}(\alpha_{\rm c}) = \sqrt{\frac{1}{n} \sum_{i=1}^n \Delta N_{Ti}^2(\alpha_{\rm c})} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\Delta N_{Ti}(\alpha_{\rm H}) \sin \alpha_{\rm H} / \sin \alpha_{\rm c})^2} = \sigma_{\Delta N_T}(\alpha_{\rm H}) \sin \alpha_{\rm H} / \sin \alpha_{\rm c}. (24)$$

На основе (24) и известного в ПРМ ССС значения несущей частоты f_0 в блоке СКО флуктуаций фазового фронта волны на выходе ионосферы рассчитывается его значение $\sigma_{\varphi}(\alpha_c)$ при наклонном распространении под углом α_c аналогично выражению (4):

$$\sigma_{\varphi}(\alpha_{\rm c}) = 80, 8\pi\sigma_{\Delta N_T}(\alpha_{\rm c})/cf_0 = 80, 8\pi\sigma_{\Delta N_T}(\alpha_{\rm H})\sin\alpha_{\rm H}/cf_0\sin\alpha_{\rm c} \,. \tag{25}$$

В соответствии с (25) в блоке расчета индекса мерцаний производится его оценка на входе ПРМ ССС при трансионосферном РРВ под наклоном α_c аналогично (5)

$$S_{4}(\alpha_{c}) = \sqrt{1 - \exp(-2(\sigma_{\varphi}(\alpha_{c})^{2}))} = \sqrt{1 - \exp(-2(80, 8\pi\sigma_{\Delta N_{T}}(\alpha_{H})\sin\alpha_{H}/cf_{0}\sin\alpha_{c})^{2})}.$$
 (26)

При малых значениях $\sigma_{\varphi}(\alpha_{c}) \ll 1$ выражение (26) можно записать в приближенном виде:

$$S_4(\alpha_{\rm c}(t)) \approx \sqrt{2}\sigma_{\varphi}(\alpha_{\rm c}(t)),$$
 (26a)

указывающем на прямо пропорциональную зависимость индекса мерцаний принимаемого сигнала от СКО флуктуаций фазового фронта волны на выходе ионосферы.

На основе (26) и известного среднего значения отношения С/Ш на входе приемника $\overline{h^2}$ в блоке оценки помехоустойчивости ССС рассчитывается вероятность ошибки при некогерентном приеме сигналов ОФМ в канале с мелкомасштабными возмущениями ионосферы при наклонном РРВ под углом α_c аналогично (6):

$$P_{\rm out}(\alpha_{\rm c}) = \frac{1}{2} \left(\frac{S_4(\alpha_{\rm c})^{-2}}{S_4(\alpha_{\rm c})^{-2} + \overline{h^2}} \right)^{S_4(\alpha_{\rm c})^{-2}},$$
(27)

где индекс мерцаний принимаемых сигналов ССС $S_4(\alpha_c)$ при известных углах возвышения трасс спутниковой связи (α_c) и навигации ($\alpha_{\rm H}$) определяется согласно (26) по результатам GPS-мониторинга СКО мелкомасштабных флуктуаций ПЭС ионосферы $\sigma_{\Delta N_T}(\alpha_{\rm H})$ на навигационной трассе PPB. В частных случаях замираний релеевского типа, когда $S_4(\alpha_c) = 1$, и отсутствии замираний, когда $S_4(\alpha_c) \rightarrow \infty$, выражение (27) сводится к известным [17, 23] видам:

$$P_{\rm our} = \left(2 + 2\overline{h^2}\right)^{-1}; \quad P_{\rm our} = 0,5 \exp\left(-h^2\right),$$
 (27a), (276)

где $h^2 = \overline{h^2}$ – отношение С/Ш на входе приемника в отсутствие замираний, равное среднему значению отношения С/Ш на входе приемника при наличии замираний.

Таким образом, разработана методика определения зависимости $P_{om}(\alpha_c) = \psi \left(\sigma_{\Delta N_T}(\alpha_{_{\rm H}}), f_0, \overline{h^2} \right)$ вероятности ошибки в ССС от несущей частоты f_0 и отношения сигнал/шум $\overline{h^2}$ на входе приемника и СКО флуктуаций ПЭС ионосферы на навигационной трассе РРВ $\sigma_{\Delta N_T}(\alpha_{_{\rm H}})$, которая включает следующие этапы:

1) обоснование структурной схемы (рис. 2) построения АПК комплекса прогнозирования помехоустойчивости ССС $P_{out}(\alpha_c)$ в условиях мелкомасштабных возмущений ионосферы на основе результатов расчета двухчастотным (f_1, f_2) приемником GPStation-6 СКО мелкомасштабных флуктуаций ПЭС ионосферы $\sigma_{AN_T}(\alpha_{H})$ на навигационной трассе PPB при произвольных известных углах прихода сигналов к приемнику ГНСС (α_{H}) и ССС (α_c) ;

2) способ пересчета результатов измерений приемником GPStation-6 мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе PPB $\Delta N_T(\alpha_{\mu})$ в мелкомасштабные флуктуации ПЭС на трассе ССС $\Delta N_T(\alpha_e)$ согласно зависимости (23) $\Delta N_T(\alpha_e) = \Delta N_T(\alpha_{\mu}) \sin \alpha_{\mu} / \sin \alpha_e$ по основе известных данных об углах прихода сигналов к приемнику ГНСС (α_{μ}) и ССС (α_e);

3) расчет искомой зависимости (11) $P_{out}(\alpha_c) = \psi(\sigma_{\Delta N_T}(\alpha_H), f_0, \overline{h^2})$ вероятности ошибки в ССС от СКО флуктуаций ПЭС ионосферы на навигационной трассе PPB, несущей частоты f_0 и отношения сигнал/шум $\overline{h^2}$ на входе приемника на

основе полученных выражений для оценки индекса мерцаний принимаемых сигналов (26) $S_4(\alpha_c) = \psi(\sigma_{\Delta N_T}(\alpha_H) \sin \alpha_H / c f_0 \sin \alpha_c)$ и вероятности его ошибочного приема (27) $P_{\text{out}}(\alpha_c) = \psi(S_4(\alpha_c), \overline{h^2})$.

3. Особенности структуры построения комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат основе GPSмониторинга мелкомасштабных флуктуаций ПЭС и алгоритма ее работы

Известно [1-3], что в спутниковой системе Коспас-Сарсат (ССК-С) передатчик (радиобуй) размещен на море (или Земле), а приемник – борту КА ССК-С. Поэтому для ССК-С структурная схема комплекса прогнозирования помехоустойчивости на основе GPS-мониторинга СКО мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе и алгоритм получения зависимости $P_{\text{ош}}(\alpha_{\text{с}}) = \psi \left(\sigma_{\Delta N_{T}}(\alpha_{\text{H}}), f_{0}, \overline{h^{2}} \right)$ будет иметь свои особенности, представленные на рис 3.

Рис. 3. Структурная схема комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат основе GPS-мониторинга мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе.

Эти особенности обусловлены тем, что при неизменных по сравнению с рис. 2 характеристиках навигационной трассы от КА ГНСС до ДЧ ПРМ GPStation-6 спутниковая трасса от передатчика (ПРД) ССК-С (радиобуя) до приемника КА ССК-С имеет угол наклона α_e , который изначально неизвестен. Главной задачей приемника КА ССК-С является определение координат (местоположения) ПРД ССК-С (радиобуя) за счет обработки принимаемого сигнала на борту КА ССК-С или наземной станции приема и обработки информации (СПОИ). После решения задачи определения координат ПРД ССК-С (радиобуя) в приемнике КА ССК-С (координаты которого известны в каждый момент времени) возможно решить задачу определения угла наклона трассы РРВ в спутниковой радиолинии (α_e). Далее с КА ССК-С или СПОИ информация о значении угла α_e , а также известных значениях несущей частоты f_0 и отношения сигнал/шум $\overline{h^2}$ на входе приемника ССК-С передается в блок оценки помехоустойчивости ССК-С.

Следует заметить, что в соответствии с полученными зависимостями (26) $S_4(\alpha_c) = \psi(\sigma_{\Delta N_T}(\alpha_{\mu}) \sin \alpha_{\mu}/cf_0 \sin \alpha_c)$ и (27) $P_{out}(\alpha_c) = \psi(S_4(\alpha_c), \overline{h^2})$ блок оценки помехоустойчивости ССК-С структурной схемы (рис. 3) комплекса прогнозирования помехоустойчивости при произвольных углах возвышения трасс спутниковой связи и навигации ($\alpha_c \neq \alpha_{\mu}$) можно представить в более компактном виде по сравнению с рис. 2.

Таким образом, для спутниковой системы Коспас-Сарсат особенности алгоритма работы и определения зависимости (11) $P_{out}(\alpha_c) = \psi \left(\sigma_{\Delta N_T}(\alpha_u), f_0, \overline{h^2} \right)$ вероятности ошибки от несущей частоты f_0 , входного отношения сигнал/шум $\overline{h^2}$ и СКО флуктуаций ПЭС ионосферы на навигационной трассе $\sigma_{\Delta N_T}(\alpha_u)$ состоят в том, что угол наклона трассы РРВ в спутниковой радиолинии α_c изначально неизвестен и может быть рассчитан после решения задачи определения координат ПРД ССК-С (радиобуя) в приемнике КА ССК-С. Поэтому алгоритм работы спутниковой системе Коспас-Сарсат для определения зависимости вероятности ошибки от флуктуаций ПЭС ионосферы на навигационной трассе PPB в соответствии с рис. 3 включает следующие этапы:

 определения координат ПРД ССК-С (радиобуя) в приемнике КА ССК-С и расчет угла наклона связной трассы α_c PPB;

2) расчет угла наклона навигационной трассы РРВ α_{μ} от КА ГНСС до ДЧ ПРМ GPStation-6;

3) определение на выходе блока расчета ПЭС по кодово-фазовым измерениям значений ПЭС ионосферы на навигационной трассе PPB $N_{\tau}(\alpha_{\mu})$;

4) выделение цифровым фильтром мелкомасштабных флуктуаций ПЭС $\Delta N_T(\alpha_{\scriptscriptstyle \rm H})$ и расчет их СКО $\sigma_{\scriptscriptstyle \Delta N_T}(\alpha_{\scriptscriptstyle \rm H})$;

5) расчет индекса мерцаний принимаемых сигналов с заданной несущей частотой f_0 на связной трассе РРВ согласно выражению (26) $S_4(\alpha_c) = \psi(\sigma_{\Delta N_r}(\alpha_{\rm H}) \sin \alpha_{\rm H}/cf_0 \sin \alpha_c);$

6) оценка помехоустойчивости спутниковой системы Коспас-Сарсат на основе результатов GPS-мониторинга ионосферы согласно зависимости (27) $P_{\text{ош}}(\alpha_{\text{c}}) = \psi \left(S_4(\alpha_{\text{c}}), \overline{h^2} \right).$

4. Аппаратно-программная реализация комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат на основе GPSмониторинга ионосферы и экспериментальные результаты

4.1. Аппаратно-программная реализация комплекса прогнозирования помехоустойчивости ССС на основе GPS-мониторинга ионосферы

Структура комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат (ССК-С) на основе GPS-мониторинга СКО

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №12, 2024

мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе, разработанного в предыдущем разделе (рис. 3), положена в основу его аппаратно-программной реализации. Суть её работы заключается в непрерывном (в каждый момент времени t) сборе показаний приёмника GPStation-6, обработке накоплении результатов измерения параметров ПЭС ионосферы для И помехоустойчивости последующего прогнозирования низкочастотной $(f_0 = 406 \text{ M}\Gamma \mu)$ спутниковой системы Коспас-Сарсат. Состав аппаратнопрограммной реализации комплекса представлен на рис. 4.

Рис. 4. Аппаратно-программная реализация комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат на основе GPSмониторинга мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе.

На физическом уровне комплекс состоит из GISTM-приёмника NovAtel GPStation-6, персонального компьютера (ПК) мониторинга, сервера обработки данных и клиентского ПК. Назначением ПК мониторинга является сбор результатов измерений приёмником GPStation-6 в каждый момент времени *t* угла наклона навигационной трассы PPB ($\alpha_{\mu} < 90^{\circ}$), псевдодальностей ($R'_{1}(\alpha_{\mu})$,

 $R'_{2}(\alpha_{n}))$ и псевдофаз ($\varphi'_{1}(\alpha_{n}), \varphi'_{2}(\alpha_{n})$) до КА ГНСС и отправка их на сервер обработки (рис. 4). Сервер выполняет обработку результатов измерений в соответствии с этапами вычислений в каждый момент времени *t* значений (см. рис. 3): ПЭС ионосферы на навигационной трассе $N_{T}(\alpha_{n}(t))$, его мелкомасштабных флуктуаций $\Delta N_{T}(\alpha_{n}(t))$, их СКО $\sigma_{\Delta N_{T}}(\alpha_{n}(t))$, индекса мерцаний принимаемых сигналов на трассе ССК-С $S_{4}(\alpha_{c}(t))$, вероятности ошибочного приема сигналов $P_{0nn}(\alpha_{c}(t))$ в ССК-С и долговременное хранение этих результатов обработки. Клиентский ПК – это компьютер, при помощи которого осуществляется доступ к результатам обработки в любой момент времени: $N_{T}(\alpha_{n}(t)), \Delta N_{T}(\alpha_{n}(t)), \sigma_{\Delta N_{T}}(\alpha_{n}(t)), S_{4}(\alpha_{c}(t))$ и $P_{0nn}(\alpha_{c}(t))$.

На программном уровне ПК мониторинга и сервер обработки используют операционную систему семейства GNU/Linux Astra Linux [24] и систему контейнеризации Docker [25] в связке с Docker Compose [26] для обеспечения переносимости и воспроизводимости. Имеется возможность воспроизвести ту же программную конфигурацию с точностью до версий на другом аппаратном обеспечении. Все программные компоненты, составляющие программную реализацию, упакованы и поставляются в виде Docker-контейнеров и разворачиваются в программный комплекс при помощи инструмента управления контейнерами docker compose.

ПК мониторинга оснащен программой NovAtelLogReader, выполняющей сбор показаний GISTM-приёмника по протоколу USB, их предварительную обработку и отправку на сервер обработки. Здесь для каждого «видимого» КА ГНСС в каждый момент времени *t* вычисляются его координаты (*X*,*Y*,*Z*) в геоцентрической системе ECEF и угол возвышения α_n , а также значения псевдодальностей ($R'_1(\alpha_n)$, $R'_2(\alpha_n)$) и псевдофаз ($\varphi'_1(\alpha_n)$, $\varphi'_2(\alpha_n)$). Приёмник помечает наименованием группировки КА ГНСС (GPS либо ГЛОНАСС) и номера КА в каждой группировке (например, GPS-30, ГЛОНАСС-12). Показания псевдодальностей и псевдофаз дополнительно помечаются несущей частотой ($f_1 | f_2$), что необходимо для разделения показаний от нескольких «видимых» КА

ГНСС. В целях предварительного обнаружения ионосферных мерцаний в приемнике GPStation-6 предусмотрена отправка отладочных показаний входного отношения сигнал/шум (C/N_0).

Помеченные показания отправляются по протоколу Apache Kafka [27], реализованного поверх сетевого протокола TCP-IP. Использование промежуточной шины сообщений и сетевого протокола TCP-IP позволяет физически размещать ПК мониторинга в удалении от сервера обработки данных.

Сервер обработки оснащен набором программного обеспечения для работы с большими данными: шиной сообщений Арасhe Kafka [27], системой обработки больших данных Apache Spark [28], хранилищем показаний на основе колоночной базы данных (БД) ClickHouse [29], системой интерактивной визуализации и аналитики Grafana [30]. На основе Apache Spark разработана система обработки показаний – приложение logserver-spark, координирующее извлечение показаний приёмника GPStation-6 из шины Apache Kafka, их обработку в Apache Spark в каждый момент времени *t* в соответствии (рис. 3) с блоком расчета СКО флуктуаций ПЭС ионосферы $\sigma_{\Delta N_T}(\alpha_n(t))$ и блоком оценки помехоустойчивости $P_{out}(\alpha_c(t))$ низкочастотной (f_0 =406 МГц) спутниковой системы Коспас-Сарсат.

Предварительно logserver-spark осуществляет группировку помеченных псевдодальностей, псевдофаз по частотам $f_1 | f_2$, группировке КА ГНСС и номеру КА, что позволяет использовать для оценки вероятности ошибки ССК-С данные всех «видимых» GPS-приёмником навигационных трасс.

Дополнительно на основе показаний координат КА ГНСС (X,Y,Z)производится фиксация траекторий движения КА. Расчет траектории подионосферных точек и углов возвышения КА ГНСС $\alpha_{\mu}(t)$ осуществляется на основе сохраняемой в настройках программы logserver-spark информации о текущем расположении GPS-приёмника.

Хранение промежуточных, конечных результатов обработки данных, а также ранее упомянутых отладочных показаний производится в базе данных

ClickHouse (рис. 4). Сохраненные в базе данных показания затем могут быть извлечены при помощи языка запросов SQL. На эту возможность опирается система Grafana, позволяющая отображать табличные данные из базы данных в виде интерактивных графиков. Grafana предоставляет многопользовательский web-интерфейс, доступ к которому пользователи получают через клиентский ПК либо с любого другого устройства с установленным web-браузер, находящимся в той же локальной сети.

4.2. Экспериментальные результаты изменения во времени помехоустойчивости спутниковой системы Коспас-Сарсат в условиях мелкомасштабных возмущений ионосферы

Напомним, что согласно (7, 18) в блоке расчета ПЭС по кодово-фазовым измерениям вычисление ПЭС ионосферы осуществляется в каждый момент отсчета времени ($t = i\tau_{\pi}$, где i = 0...n) с интервалом $\tau_{\pi} = 0,02$ с и частотой дискретизации $f_{\pi} = 1/\tau_{\pi} = 50$ Гц осуществляется вычисление ПЭС ионосферы $N_T(\alpha_{\mu})$ на наклонной ($\alpha_{\mu} < 90^\circ$) трассе РРВ от КА ГНСС до ДЧ ПРМ GPStation-6.

По мере накопления дискретных значений $N_{T}(\alpha_{n})$ и изменения угла наклона навигационной трассы РРВ $\alpha_{n}(t)$ на выходе блока расчета ПЭС по кодово-фазовым измерениям ПЭС формируется временной ряд $N_{T}(\alpha_{n}(t))$. Поэтому на выходе всех блоков комплекса прогнозирования помехоустойчивости ССС (рис. 3) будут формироваться временные ряды мелкомасштабных флуктуаций ПЭС ионосферы на навигационной трассе $\Delta N_{T}(\alpha_{n}(t))$, их СКО $\sigma_{\Delta N_{T}}(\alpha_{n}(t))$, индекса мерцаний принимаемых в ССС сигналов $S_{4}(\alpha_{c}(t)) = \psi(\sigma_{\Delta N_{T}}(\alpha_{n}(t)) \sin \alpha_{n}(t)/cf_{0} \sin \alpha_{c}(t))$ и вероятности их ошибочного приема $P_{out}(\alpha_{c}(t)) = \psi(S_{4}(\alpha_{c}(t), \overline{h^{2}}).$

Отсюда следует, что для оценки изменения во времени помехоустойчивости низкочастотной ($f_0 \approx 406$ МГц) спутниковой системы Коспас-Сарсат, использующей результаты GPS-мониторинга ионосферы в

условиях мелкомасштабных возмущений и получения искомой (12) зависимости $P_{om}(\alpha_{c}(t)) = \psi \left(\sigma_{\Delta N_{T}}(\alpha_{H}(t)), \alpha_{c}(t), f_{0}, \overline{h^{2}} \right)$ необходимо, прежде всего, конкретизировать изменение во времени угла наклона навигационной трассы РРВ $\alpha_{H}(t)$.

С этой целью проанализируем исходные данные наблюдения результатов работы аппаратно-программной реализации комплекса (рис. 4) прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат, размещенного в Северо-Кавказском федеральном университете (г. Ставрополь).

С помощью аппаратно-программной реализации комплекса (рис.4) наблюдалось перемещение относительно г. Ставрополя КА типа GPS-30 утром 9 января 2024 года в 45-минутном интервале 08:47 – 09:32 по гринвичскому времени. Подспутниковая точка в течение рассматриваемого интервала перемещалась через республику Казахстан (рис. 5а) по траектории от точки А к точке В. Соответствующая ей подионосферная точка КА GPS-30, полученная при помощи системы интерактивной визуализации и аналитики Grafana аппаратно-программной реализации комплекса (рис. 4), перемещалась по восточной части Ставропольского края в сторону республики Дагестан (рис. 5б) по траектории А'-В'.

a)

б)

Рис. 5. Траектории подспутниковой (а) и подионосферной (б) точек космического аппарата GPS-30, наблюдаемого 09.01.2024 с 08:47 по 09:32.

В ходе наблюдений комплексом (рис.4) за перемещением КА GPS-30 в течение 45 минут (08:47 – 09:32) приёмник GPStation-6 производил фиксацию не только ПЭС ионосферы, но и мгновенных значений отношения C/N_0 мощности принимаемого сигнала C к спектральной плотности N_0 мощности шума (рис. 6). Ее величина пропорциональна отношению $h^2 = E_r/N_0 = CT_s/N_0$ энергии принимаемого сигнала $E_r = CT_s$ (длительностью T_s) к N_0 . По результатам измерения отношения C/N_0 на интервале времени с 09:08 по 09:12 (см. рис. 6) было обнаружено падение отношения сигнал-шум $C/N_0 \sim h^2$ примерно на 1 дБ, что может привести к ухудшению показателей качества приема сигналов в канале от КА ГНСС до ДЧ ПРМ GPStation-6.

Рис. 6. Изменение отношения сигнал – шум (C/N_0) на входе приёмника GPStation-6 на интервале времени t = 08:47...09:32.

Можно предположить, что причиной кратковременного уменьшения отношения C/N_0 мощности принимаемого сигнала ГНСС приемником GPStation-6 к спектральной плотности мощности шума являются мелкомасштабные возмущения ПЭС ионосферы, поскольку аналогичные уменьшения отношения C/N_0 на входе приемника ГНСС наблюдались при образовании на трассе PPB мелкомасштабных неоднородностей ЭК в экваториальной ионосфере [31,32].

Чтобы подтвердить справедливость указанного предположения, проанализируем изменение на интервале времени с *t* = 08:47 по 09:32 значения ПЭС ионосферы на трассе РРВ в результате перемещения КА GPS-30

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №12, 2024

(см. рис. 5). Вследствие постепенного удаления с течением времени t подионосферной точки от приемника GPStation-6 (см. рис. 5б) происходит уменьшение угла наклона навигационной трассы $\alpha_{\mu}(t)$ относительно горизонта (см. рис 3). Результаты измерения в аппаратно-программной реализации комплекса (рис.4) уменьшения угла наклона навигационной трассы $\alpha_{\mu}(t)$ от KA GPS-30 до приемника GPStation-6 на рассматриваемом интервале времени t = 08:47...09:32 представлены на рис. 7.

Рис. 7. Изменение угла наклона навигационной трассы $\alpha_{_{\rm H}}$ от KA GPS-30 до приемника GPStation-6 во времени на интервале t = 08:47...09:32.

Согласно рис. 7 на интервале t = 08:47...09:32 угол наклона навигационной трассы уменьшается с величины $\alpha_{\rm H} \approx 75^{\circ}$ до 55°, а на интервале времени $t \approx 09:08...09:12$ составляет примерно $\alpha_{\rm H} \approx 66^{\circ}$.

В результате уменьшения $\alpha_{_{\rm H}}(t)$ значение соsес $\alpha_{_{\rm H}}(t)$ возрастает, что согласно (15) обуславливает увеличение ПЭС на навигационной трассе РРВ

$$N_{T}(t) \equiv N_{T}(\alpha_{H}(t)) = \overline{N_{T}}(\alpha_{H}(t)) + \Delta N_{T}(\alpha_{H}(t)) =$$

= $N_{T} \operatorname{cosec} \alpha_{H}(t) = \overline{N_{T}} \operatorname{cosec} \alpha_{H}(t) + \Delta N_{T} \operatorname{cosec} \alpha_{H}(t),$ (28)

поскольку величину ПЭС при вертикальном ($\alpha = 90^{\circ}$) PPB $N_T = \overline{N_T} + \Delta N_T$ можно считать неизменной на малом интервале времени (например, с t = 08:47 по 09:32).

На рис. 8 представлены полученные аппаратно-программной реализацией комплекса (рис. 4) результаты изменения во времени (т.е. временной ряд с интервалом дискретизации $\tau_{_{\pi}}$ =0,02 с) на интервале наблюдения t=08:47 ...09:32 значений ПЭС ионосферы на трассе PPB $N_T(\alpha_{_{\rm H}})$ под углом $\alpha_{_{\rm H}} \approx 75^\circ$ до 57°,

полученные на выходе блока расчета ПЭС по кодово-фазовым измерениям (см. рис. 3).

Рис. 8. Изменение ПЭС ионосферы на навигационной трассе РРВ $N_T(\alpha_{_{\rm H}})$ на интервале времени t = 08:47...09:32, полученные на выходе блока расчета ПЭС по кодово-фазовым измерениям.

Анализ рис. 8 показывает, что на 45-минутном интервале наблюдений (с t = 08:47 по 09:32) ПЭС ионосферы на навигационной трассе РРВ возрастает с величины примерно $N_T \approx 16$ TECU (где 1 TECU= 10^{16} м⁻²) до $N_T \approx 22$ TECU (т.е. в 1,3 раза).

Следует обратить внимание, что на 4-минутном интервале времени с $t \approx 09:08$ до $t \approx 09:12$ на рис. 8 наблюдается небольшое увеличение флуктуационной составляющей ПЭС ионосферы $\Delta N_T(\alpha_{\mu}(t)) = \Delta N_T \csc \alpha_{\mu}(t)$ относительно среднего значения $\overline{N_T}(\alpha_{\mu}(t)) = \overline{N_T} \csc \alpha_{\mu}(t)$. Эти мелкомасштабные флуктуации ПЭС выделяются цифровым фильтром (см. рис. 3) и имеют вид временного ряда, представленного на рис. 9.

Рис. 9. Изменение мелкомасштабных флуктуаций ПЭС $\Delta N_T(\alpha_{\mu})$ на интервале времени t = 08:47...09:32, полученные на выходе цифрового фильтра.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №12, 2024</u>

Анализ рис. 9 показывает, что на 4-минутном интервале времени $t \approx 09:08...09:12$ наибольшие значения мелкомасштабных флуктуаций ПЭС ионосферы достигают примерно $\Delta N_T(\alpha_{\mu}(t)) \approx 0.05$ ТЕСИ и в 1,6 раз превышают фоновые значения $\Delta N_T(\alpha_{\mu}(t)) \approx 0.03$ ТЕСИ на участках t=08:47...09:08 и t=09:12...09:32, а в момент времени, близкий к $t \approx 09:11$ они с течение нескольких секунд могут достигать максимальной величины $\Delta N_T(\alpha_{\mu}(t)) \approx 0.1$ ТЕСИ (т.е. почти в 3 раза выше фонового значения 0.03 ТЕСИ).

Отсюда следует, что причиной кратковременного (длительностью несколько секунд) падения отношения сигнал-шум (C/N_0) на входе ПРМ GPStation-6 на 1 дБ момент времени $t \approx 09$:11 является возрастание в 3 раза мелкомасштабных флуктуаций ПЭС ($\Delta N_T(\alpha_{\rm H}(t))$ ионосферы на навигационной трассе PPB.

Полученные аппаратно-программной реализацией комплекса (рис. 4) результаты (рис. 9) определения $\Delta N_T(\alpha_{_{\rm H}}(t))$ позволяют на выходе блоков расчета СКО флуктуаций ПЭС (рис. 3, 4) получить результаты изменения во времени (временной ряд) на интервале t = 08:47...09:32 величины СКО мелкомасштабных флуктуаций ПЭС ионосферы при РРВ на трассе от КА ГНСС (конкретно GPS-30) до ДЧ ПРМ GPStation-6 $\sigma_{\Delta N_T}(\alpha_{_{\rm H}}(t)) = (\Delta N_T^2(\alpha_{_{\rm H}}(t)))^{0.5}$, представленные на рис. 10.

Рис. 10. Изменение во времени СКО мелкомасштабных флуктуаций ПЭС ионосферы при РРВ на трассе от КА ГНСС до приемника GPStation-6.

Анализ рис. 10 показывает, что СКО мелкомасштабных флуктуаций ПЭС ионосферы при РРВ на трассе от КА ГНСС до ДЧ приемника GPStation-6 на фоновых интервалах времени ($t \approx 08:47 - 09:08$ и 09:12 – 09:32) в среднем составляет $\sigma_{\Delta N_T}(\alpha_{\rm H}) \approx 0,01$ ТЕСU, но на интервале $t \approx 09:08 - 09:12$ (т.е. в течение 4 минут) оно возрастает до $\sigma_{\Delta N_T}(\alpha_{\rm H}) \approx 0,015$ ТЕСU (т.е. в 1,5 раза) и в течение 20 секунд может достигать максимального значения $\sigma_{\Delta N_T}(\alpha_{\rm H}) \approx 0,03$ ТЕСU (т.е. возрастает в 3 раза).

Для дальнейших расчетов предположим, что на рассматриваемом интервале времени с t = 08:47 по 09:32 в результате перемещения КА ССК-С (см. рис. 3) происходит постепенное удаление подионосферной точки от ПРД ССК-С, что обуславливает уменьшение угла наклона связной трассы РРВ $\alpha_c(t)$ относительно горизонта, как показано на рис. 11. Данные об изменениях $\alpha_c(t)$ поступают в комплекс (рис.4) с приемника КА ССК-С (рис. 3)

Рис. 11. Изменение угла наклона связной трассы РРВ α_c во времени на интервале t = 08:47...09:32.

Согласно рис. 11 на интервале t = 08:47...09:32 угол наклона связной трассы РРВ (т.е. от ПРД ССК-С до ПРМ КА ССК-С) уменьшается с величины $\alpha_c \approx 52^\circ$ до 45° и на интервале t = 09:08...09:12 составляет примерно $\alpha_c \approx 48^\circ$.

Полученные результаты расчета комплексом (рис. 4) изменения во времени СКО мелкомасштабных флуктуаций ПЭС ионосферы при PPB на трассе от КА ГНСС до приемника GPStation-6 $\sigma_{\Delta N_r}(\alpha_{\rm H}(t))$, приведенные на рис. 10, и результаты изменения во времени углов наклона навигационной $\alpha_{\rm H}(t)$ и

связной $\alpha_{c}(t)$ трассы РРВ, приведенные на рис. 7 и 11, позволяют сформировать результаты изменения во времени на интервале t = 08:47...09:32 индекса мерцаний сигнала на входе ПРМ ССК-С согласно выражению (26)

$$S_4(\alpha_{\rm c}(t)) = \sqrt{1 - \exp(-2(80, 8\pi\sigma_{\Delta N_T}(\alpha_{\rm H}(t))\sin\alpha_{\rm H}(t)/cf_0\sin\alpha_{\rm c}(t))^2)}.$$
 (29)

представленные на рис. 12.

Анализ рис. 12 показывает, что индекс мерцаний сигнала на входе ПРМ ССК-С $S_4(\alpha_c(t))$ на фоновых интервалах времени в среднем составляет $S_4(\alpha_c) \approx 0,35$, но на интервале $t \approx 09:08 - 09:12$ (т.е. в течение 4 минут) он возрастает до $S_4(\alpha_c) \approx 0,55$ (т.е. в 1,6 раза) и в течение 20 секунд может достигать максимального значения $S_4(\alpha_c) \approx 0,85$ (т.е. возрастает в 2,4 раза).

В соответствии с результатами расчета комплексом (рис. 4) индекса мерцаний сигнала (рис. 12) на входе ПРМ ССК-С $S_4(\alpha_c(t))$, на выходе блока оценки помехоустойчивости ССС (см. рис. 3) формируются результаты изменения во времени (временного ряда) на интервале t=08:47...09:32 вероятности ошибки при некогерентном приеме ортогональных сигналов согласно зависимости (27)

$$P_{\rm out}(\alpha_{\rm c}(t)) = \frac{1}{2} \left(\frac{S_4(\alpha_{\rm c}(t))^{-2}}{S_4(\alpha_{\rm c}(t))^{-2} + \overline{h^2}} \right)^{S_4(\alpha_{\rm c}(t))^{-2}},$$
(30)

представленные на рис. 13. Эти зависимости рассчитаны для среднего отношения сигнал / шум на входе приемника ССС $\overline{h^2} = 10 \text{ дБ}$ (рис. 13).

ошибочного приема сигналов в спутниковой системы Коспас-Сарсат от изменения индекса мерцаний $S_4(\alpha_c(t))$ при отношении сигнал/шум $\overline{h^2} = 10 \text{ дБ}$.

Анализ рисунков 10, 12 и 13 показывает, что на фоновых интервалах времени ($t \approx 08:47 - 09:08$ и $t \approx 09:12 - 09:32$), когда СКО мелкомасштабных флуктуаций ПЭС ионосферы при PPB на навигационной трассе в среднем составляет $\sigma_{AN_r}(\alpha_n) \approx 0,01$ TECU, а индекс мерцаний сигнала на входе ПРМ ССК-С – $S_4(\alpha_c) \approx 0,35$, вероятность ошибочного приема сигналов при $\overline{h^2} = 10$ дБ составляет примерно $P_{out}(\alpha_c(t)) \approx 8 \cdot 10^{-4}$, т.е. меньше допустимого [4-6] значения $P_{out,aon} = 10^{-3}$. Однако на 4-минутном интервале $t \approx 09:08 - 09:12$, когда СКО мелкомасштабных флуктуаций ПЭС ионосферы возрастает до $\sigma_{AN_r}(\alpha_n) \approx 0,015$ ТЕСU, а индекс мерцаний сигнала на входе ПРМ ССК-С – до $S_4(\alpha_c) \approx 0,55$, вероятность ошибки возрастает до недопустимого значения $P_{out}(\alpha_c(t)) \approx 3 \cdot 10^{-3} > P_{out,aon} \approx 10^{-3}$. Причем в течение 20 секунд, когда достигается максимальное значение СКО мелкомасштабных флуктуаций ПЭС ионосферы $\sigma_{AN_r}(\alpha_n) \approx 0,033$ ТЕСU и индекса мерцаний $S_4(\alpha_c) \approx 0,85$, вероятность ошибочного приема сигналов может достигать величины $P_{out}(\alpha_c(t)) \approx 3 \cdot 10^{-2} >> P_{out,aon} \approx 10^{-3}$.

Таким образом, совокупность выражений (30) $P_{\text{ош}}(\alpha_{c}(t)) = \psi \left(S_{4}(\alpha_{c}(t)), \overline{h^{2}} \right)$ и (29) $S_{4}(\alpha_{c}(t)) = \psi(\sigma_{\Delta N_{T}}(\alpha_{H}(t)) \sin \alpha_{H}(t) / cf_{0} \sin \alpha_{c}(t))$ указывает на получение искомой зависимости (12) $P_{\text{ош}}(\alpha_{c}(t)) = \psi \left(\sigma_{\Delta N_{T}}(\alpha_{H}(t)), \alpha_{c}(t), f_{0}, \overline{h^{2}} \right)$ для оценки изменения во времени помехоустойчивости спутниковой системы Коспас-Сарсат при произвольных углах возвышения трасс спутниковой связи и навигации ($\alpha_c \neq \alpha_{\mu}$).

5. Оценка энергетического запаса для обеспечения в спутниковой системе Коспас-Сарсат допустимой вероятности ошибки при различных состояниях ионосферы

Чтобы оценить энергетический запас $\Delta h_{\text{доп}}^2$, необходимый для обеспечения допустимой вероятности ошибки $P_{\text{ош доп}} = 10^{-3}$ в спутниковой системе Коспас-Сарсат (использующей несущую частоту $f_0 \approx 406$ МГц) при различных состояниях ионосферы, необходимо установить его зависимость (13) $\Delta h_{\text{доп}}^2 = \psi \left(S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0), P_{\text{ош доп}}) \right)$ от индекса мерцаний принимаемых сигналов $S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0)$, который определяется СКО мелкомасштабных флуктуаций ПЭС ионосферы на трассе РРВ от КА ГНСС до приемника GPStation-6 $\sigma_{\Delta N_T}(\alpha_{\text{H}}(t))$.

С этой целью проанализируем зависимости $P_{out} = \psi(\overline{h^2}, S_4)$ вероятности ошибочного приема сигналов от отношения сигнал/шум $\overline{h^2} = h^2$ на входе приемника при различных значениях индекса мерцаний S_4 принимаемого сигнала на 3-х интервалах времени, соответствующих различным состояниям ионосферы:

1) на фоновых интервалах времени ($t \approx 08:47 - 09:08$ и $t \approx 09:12 - 09:32$), когда индекс мерцаний сигнала на входе ПРМ ССК-С $S_4(\alpha_c(t))$ в среднем составляет $S_4(\alpha_c) \approx 0.35$;

2) на 4-минутном интервале времени ($t \approx 9:08...09:12$), когда индекс мерцаний сигнала на входе ПРМ ССК-С $S_4(\alpha_c(t))$ возрастает до $S_4(\alpha_c) \approx 0.55$;

3) на 20-секундном интервале времени (примерно в $t \approx 9:11$), когда индекс мерцаний сигнала на входе ПРМ ССК-С $S_4(\alpha_c(t))$ возрастает до $S_4(\alpha_c) \approx 0.85$.

Следует заметить, что согласно [33] по величине индекса S_4 ионосферные мерцания классифицируются на 3 уровня: слабые – при $S_4 < 0,3$, средние – $0,3 < S_4 < 0,6$, сильные $S_4 > 0,6$. Согласно известным [4–6] результатам

экспериментальных исследований в среднеширотной нормальной ионосфере индекс мерцаний на частотах Р-диапазона ($f_0 \approx 400$ МГц) составляет $s_4 = 0,27...0,49$ и обычно не превышает $s_4 < 0,5$. Поэтому на фоновых интервалах времени, когда $s_4(\alpha_c) \approx 0,35$, мерцания спутниковой системе Коспас-Сарсат могут быть отнесены к уровню слабых-средних, которые характерны для среднеширотной нормальной ионосферы. На 4-минутном интервале, когда $s_4(\alpha_c) \approx 0,55$, мерцания имеют средний уровень, а на 20-секундном интервале времени при $s_4(\alpha_c) \approx 0,85$ наблюдаются сильные мерцания. Очевидно, что они обусловлены появлением мелкомасштабных возмущений ионосферы (увеличением $\sigma_{\alpha N_r}$) на трассе PPB.

На рис. 15 представлены 3 зависимости $P_{out} = \psi(\overline{h^2}, S_4)$ вероятности ошибочного приема сигналов отношения сигнал/шум $\overline{h^2} = h^2$ на входе приемника в спутниковой системе Коспас-Сарсат, построенные согласно (27) при различных значениях индекса мерцаний S_4 принимаемого сигнала, соответствующих различным состояниям ионосферы:

1) нормальному для средних широт, когда СКО мелкомасштабных флуктуаций ПЭС ионосферы составляет $\sigma_{\Delta N_T}(\alpha_{\rm H}) \approx 0,01$ ТЕСИ и наблюдается индекс мерцаний $S_4(\alpha_{\rm c}) \approx 0,35$, соответствующий слабо-среднему уровню;

2) на 4-минутном интервале времени ($t \approx 9:08...09:12$), когда наблюдаются мелкомасштабные возмущения ионосферы до $\sigma_{\Delta N_r}(\alpha_{\mu}) \approx 0,015$ ТЕСИ и индекс мерцаний возрастает до среднего уровня $S_4(\alpha_c) \approx 0,55$;

3) на 20-секундном интервале времени (примерно $t \approx 9:11$), когда наблюдаются сильные возмущения ионосферы $\sigma_{\Delta N_T}(\alpha_{_{\rm H}}) \approx 0,03$ ТЕСИ и сильные мерцания сигнала: $S_4(\alpha_{_{\rm C}}) \approx 0,85$.

Пунктирной линией на рис. 14 представлена зависимость $P_{om} = \psi(h^2)$ вероятности ошибочного приема сигналов в спутниковой системе Коспас-Сарсат от отношения сигнал/шум h^2 на входе приемника при отсутствии

мелкомасштабных неоднородностей ионосферы ($\sigma_{\Delta N_T} = 0$) и мерцаний ($S_4 = 0$) принимаемого сигнала, построенная согласно выражению (276).

Рис. 14. Зависимость $P_{out} = \psi(\overline{h^2}, S_4)$ вероятности ошибочного приема сигналов от отношения сигнал / шум ($\overline{h^2} = h^2$) на входе приемника при различном индексе ионосферных мерцаний S_4 : 1) 0,35; 2) 0,55; 3) 0,85.

Анализ рис. 14 показывает, что при обеспечении отношения сигнал / шум $(\overline{h^2} = h^2)$ на входе приемника $h_{\text{доп}}^2 \approx 10$ (т.е. 10 дБ) достигаются следующие значения вероятности ошибки при некогерентном приеме сигналов ОФМ: $P_{\text{ош}} \approx 8 \cdot 10^{-4}$ при индексе мерцаний принимаемого сигнала $S_4 = 0,35$, $P_{\text{ош}} \approx 5 \cdot 10^{-3}$ при $S_4 = 0,55$, $P_{\text{ош}} \approx 3 \cdot 10^{-2}$ при $S_4 = 0,85$. Эти результаты соответствуют приведенным выше экспериментальным данным на рис. 13.

Анализ рис. 14 показывает, что для обеспечения допустимого в ССК-С значения вероятности ошибочного приема сигналов $P_{out} = P_{out, gon} = 10^{-3}$ при отсутствии замираний (мерцаний) принимаемого сигнала ($S_4 = 0$) необходимо обеспечить допустимое отношения сигнал/шум ($\overline{h^2} = h^2 = h_{gon}^2$) на входе приемника $h_{gon0}^2 \approx 6$ (т.е. 8 дБ), при обычном слабо-среднем уровне мерцаний $S_4 = 0,35$ необходимо реализовать $h_{gon1}^2 \approx 9,3$ (9,7 дБ), при повышении индекса мерцаний до среднего уровня $S_4 = 0,55$ потребуется $h_{gon2}^2 \approx 18,36$ (12,6 дБ), при сильном уровне

мерцаний $S_4 = 0,85$ необходимо повысить допустимое отношение сигнал / шум на входе приемника до $h_{nor3}^2 \approx 122$ (21 дБ).

Результаты расчета требуемого энергетического запаса $\Delta h_{\text{доп}\,i}^2 = h_{\text{доп}\,i}^2 - h_{\text{доп}\,0}^2$ для обеспечения в ССК-С допустимой вероятности ошибки $P_{\text{ош доп}} = 10^{-3}$ при 3-х состояниях ионосферы $\sigma_{\Delta N_T}(\alpha_{\text{H}})$ и соответствующих индексах мерцаний S₄ принимаемых сигналов приведены в таблице 1.

No	$\sigma_{\Delta N_T}(\alpha_{_{\rm H}})$ (TECU)	\mathbf{S}_4	${h^2}_{{ m доп}i}({ m д}{ m B})$	$\Delta h^2_{{ m доп}i}({ m д}{ m 5})$
1	0,01	0,35	9,7	1,7
2	0,015	0,55	12,6	4,6
3	0,03	0,85	21	13

Таблица 1. Результаты расчета энергетического запаса.

Анализ таблицы 1 показывает, что для обеспечения допустимого в ССК-С значения вероятности ошибочного приема сигналов $P_{\text{ош доп}} = P_{\text{ош доп}} = 10^{-3}$ при обычном слабо-среднем уровне мерцаний $S_4 = 0,35$ в ССК-С достаточно запас $\Delta h_{\text{доп1}}^2 = h_{\text{доп1}}^2 - h_{\text{доп0}}^2 \approx 9,7-8=1,7$ дБ. предусмотреть энергетический При образовании в течение 4-х минут мелкомасштабных возмущений ионосферы, сопровождаемых повышением индекса мерцаний до среднего $S_4 = 0,55$, потребуется увеличить энергетический уровня запас ДО $\Delta h_{\text{доп2}}^2 = h_{\text{доп2}}^2 - h_{\text{доп0}}^2 \approx 12,6-8=4,6$ дБ. При действии в течение 20 секунд сильных мерцаний S₄=0,85 необходимо повысить энергетический запас ССК-С до $\Delta h_{\text{лог3}}^2 = h_{\text{лог3}}^2 - h_{\text{лог0}}^2 \approx 21 - 8 = 13$ дБ (т.е. в 20 раз). Это представляется проблематичным, поскольку в существующих ССК-С предусматривается энергетический запас, не превышающий 10 дБ [34 – 36].

Заметим, что согласно рис. 14 для обеспечения более высоких требований к вероятности ошибочного приема сигналов в ССК-С, например $P_{\text{ош доп}} = 10^{-5}$, в условиях проявления сильных ионосферных мерцаний $S_4 = 0,85$ необходимо

повысить энергетический запас до $\Delta h_{\text{доп}}^2 = h_{\text{доп}}^2 - h_{\text{доп}}^2 \approx 35-10=25 \text{ дБ}$ (т.е. более 300 раз), что практически не реализуемо.

Следует отметить, что зависимость (6, 27) $P_{\text{ош}} = \psi(S_4, \overline{h^2})$ соответствует помехоустойчивости некогерентного приема сигналов с относительной фазовой манипуляцией (ОФМ), тогда как в спутниковой системе Коспас-Сарсат используется схема когерентного приема сигналов с фазовой манипуляцией (ФМ). Однако для случая когерентного приема сигналов ФМ в канале связи с райсовскими замираниями отсутствует аналитическая зависимость вида $P_{\text{ош}} = \psi(S_4, h^2)$. При этом известно [23, 36, 37], что для обеспечения $P_{\text{ош доп}} = 10^{-3}$ выигрыш в отношении С/Ш при когерентном приеме ФМ по сравнению с некогерентным приемом ОФМ составляет порядка 1 дБ при отсутствии мерцаний (*S*₄=0) и порядка 3 дБ – при релеевских замираниях (*S*₄=1). Поэтому аналитическая зависимость (6) $P_{\text{ош}} = \psi(S_4, h^2)$ для оценки помехоустойчивости некогерентного приема в ССК-С сигналов с относительной фазовой манипуляцией (ОФМ) можно использовать для получения граничных оценок допустимого отношения С/Ш $h_{_{\text{доп}}}^2 = \psi(S_4, P_{_{\text{онгдоп}}} = 10^{-3})$ и энергетического запаса Δh_{non}^2 в ССК-С с погрешностью не более 3 дБ. Подтверждением этому могут служить полученные в [4, 5] значения энергетического запаса в ССК-С при близких значениях экспериментально измеренных индексов мерцаний: при $S_4 = 0,3$ потребуется $\Delta h_{\text{доп}}^2 \approx 0,75$ дБ, а при $S_4 = 0,5$ потребуется $\Delta h_{\text{доп}}^2 \approx 3$ дБ. Эти результаты расходятся с приведенными в табл. 1 не более чем на 1,6 дБ (т.е. в 1,4 раза).

Таким образом, на основе приведенных на рис. 14 зависимостей $P_{out} = \psi(\overline{h^2}, S_4)$ вероятности ошибочного приема сигналов от отношения сигнал/шум ($\overline{h^2} = h^2$) на входе приемника при различных значениях индекса ионосферных мерцаний $S_4(0,35; 0,55; 0,85)$ получены (табл. 1) искомые (14) оценки энергетического запаса Δh_{aon}^2 , необходимого для обеспечения в

спутниковой системе Коспас-Сарсат допустимой вероятности ошибки при различных состояниях ионосферы: $\Delta h_{\text{доп}}^2 = \psi \left(S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0), P_{\text{ош доп}}) \right).$

Заключение

Разработан метод прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат в условиях мелкомасштабных возмущений ионосферы на основе результатов GPS-мониторинга мелкомасштабных флуктуаций ПЭС ионосферы при произвольных углах возвышения трасс спутниковой связи и навигации ($\alpha_c \neq \alpha_{\mu}$). В рамках данного метода решены следующие задачи:

1) разработана методика определения (11)зависимости $P_{\text{ош}}(\alpha_{\text{c}}) = \psi \left(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0, \overline{h^2} \right)$ вероятности ошибки в спутниковых системах связи от несущей частоты f_0 и отношения сигнал/шум $\overline{h^2}$ на входе приемника и СКО флуктуаций ПЭС ионосферы на навигационной трассе РРВ $\sigma_{\Delta N_r}(\alpha_{_{\rm H}})$; искомая зависимость (11) получена виде совокупности выражений для оценки индекса (26) $S_4(\alpha_c) = \psi(\sigma_{\Delta N_r}(\alpha_H) \sin \alpha_H / c f_0 \sin \alpha_c)$ мерцаний принимаемого сигнала И вероятности его ошибочного приема (27) $P_{\text{ош}}(\alpha_{\text{c}}) = \psi \left(S_4(\alpha_{\text{c}}), \overline{h^2} \right);$

2) обоснованы особенности структуры построения комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат основе GPS-мониторинга мелкомасштабных флуктуаций ПЭС (рис. 3) и алгоритма ее работы. Они состоят в том, что угол наклона трассы PPB в спутниковой радиолинии α_c изначально неизвестен и может быть рассчитан после решения задачи определения координат радиобуя в приемнике космического аппарата;

4) разработана аппаратно-программная реализация комплекса прогнозирования помехоустойчивости спутниковой системы Коспас-Сарсат на основе результатов GPS-мониторинга ионосферы (рис. 4) и получены экспериментальные результаты изменения вероятности ошибочного приема сигналов в спутниковой системы Коспас-Сарсат $P_{om}(\alpha_{c}(t))$ при заданном

отношении сигнал/шум во время мелкомасштабных возмущений ионосферы и возрастания уровня ионосферных мерцаний (рис. 13);

5) получены оценки энергетического запаса $\Delta h_{\text{доп}}^2 = \psi \left(S_4(\sigma_{\Delta N_T}(\alpha_{\text{H}}), f_0), P_{\text{ош доп}} \right) \right)$ для обеспечения в спутниковой системе Коспас-Сарсат допустимой вероятности ошибки при различных состояниях ионосферы (табл. 1) на основе приведенных на рис. 14 зависимостей $P_{\text{ош}} = \psi(\overline{h^2}, S_4)$ вероятности ошибочного приема сигналов от отношения сигнал/шум ($\overline{h^2}$) на входе приемника при различных уровнях индекса ионосферных мерцаний S_4 (0,35; 0,55; 0,85).

В результате установлено, что для обеспечения допустимого в значения вероятности ошибочного приема сигналов $P_{out aon} = P_{out aon} = 10^{-3}$ при образовании в течение 4 минут мелкомасштабных возмущений ионосферы, сопровождаемых повышением индекса мерцаний до среднего уровня $S_4 = 0,55$, потребуется увеличить энергетический запас до $\Delta h_{aon2}^2 \approx 4,6$ дБ. При действии в течение 20 секунд сильных мерцаний $S_4 = 0,85$ необходимо повысить энергетический запас спутниковой системы Коспас-Сарсат до $\Delta h_{aon3}^2 \approx 13$ дБ (т.е. в 20 раз). Это представляется проблематичным, поскольку в существующих ССК-С предусматривается энергетический запас, не превышающий 10 дБ.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 24-21-00295 (https://rscf.ru/project/24-21-00295/).

Литература

- Specification for second-generation COSPAS-SARSAT 406 MHz distress beacons. C/S T.018. Issue 1, 2016. 72 p.
- 2. International Cospas-Sarsat Programme. Wikipedia. https://en.wikipedia.org/wiki/International_Cospas-Sarsat_Programme

- Урличич Ю.М., Макаров Ю.Ф., Селиванов А.С., Никушкин И.В. и др. Принцип действия и основные характеристики системы КОСПАС // Т-сотт. Телекоммуникации и транспорт. 2014. № 4. С.15-19.
- Назаров Л.Е., Антонов Д.В., Батанов В.В., Зудилин А.С., Смирнов В.М. Модели сцинтилляции сигналов при распространении по ионосферным спутниковым радиолиниям // Радиоэлектроника. Наносистемы. Информационные технологии. – 2019. – Т. 11. – №. 1. – С. 57-64. https://doi.org/10.17725/Rensit.2019.11.057
- 5. Назаров Л.Е., Смирнов В.М. Оценивание вероятностных характеристик приема сигналов с использованием моделей замираний при распространении по трансионосферным линиям // Журнал радиоэлектроники. 2020. № 11. https://doi.org/10.30898/1684-1719.2020.11.7
- Назаров Л.Е., Смирнов В.М. Вероятностные характеристики приема сигналов с замиранием при распространении по спутниковым ионосферным радиолиниям. // Физические основы приборостроения. 2020. Т. 9. № 4(38). – С. 18–23. https://doi.org/10.25210/jfop-2004-018023
- Пашинцев В.П., Цимбал В.А., Песков М.В., Тоискин В.Е. Метод GPS-мониторинга мелкомасштабных неоднородностей ионосферы и его применение для прогноза помехоустойчивости систем спутниковой связи // Радиотехника. – 2023. – Т. 87. – № 10. – С. 131-146. https://doi.org/10.18127/j00338486-202310-14
- V. Pashintsev, M. Peskov, D. Mikhailov, M. Senokosov, D. Solomonov. Method for GPS-Monitoring of Small-Scale Fluctuations of the Total Electron Content of the Ionosphere for Predicting the Noise Immunity of Satellite Communications // Ionosphere - New Perspectives. Edited by Yann-Henri H. Chemin. London: IntechOpen, 2023. P. 13-33. https://doi.org/10.5772/intechopen.1001096
- Pashintsev V.P., Peskov M.V., Kalmykov I.A., Zhuk A.P., Toiskin V.E. Method for forecasting of interference immunity of low frequency satellite communication systems // AD ALTA-Journal of interdisciplinary research. 2020. T. 10. № 1. C. 367-375. https://doi.org/10.33543/1001

- Rino C.L. The Theory of Scintillation with Applications in Remote Sensing. John Wiley & Sons, Hoboken, New Jersey, 2011, 244 p.
- 11. Гундзе Е., Чжаохань Лю. Мерцания радиоволн в ионосфере // ТИИЭР. 1982.
 Т. 70. № 4. С. 5-45.
- 12. Крейн Р.К. Мерцания радиоволн в ионосфере // ТИИЭР. 1977. Т. 65. № 2.
 C. 5-29. https://doi.org/10.1109/PROC.1977.10456
- Bogusch R.L., Gulgliano F. W., Knepp D.L. Frequency-selective scintillation effects end decision feedback equalization in high data-rate satellite links // Proceedings of the IEEE, 1983, vol. 71, N 6. P. 754-767. https://doi.org/10.1109/PROC.1983.12662
- 14. Маслов О.Н., Пашинцев В.П. Модели трансионосферных радиоканалов и помехоустойчивость систем космической связи. Самара: ПГАТИ. 2006. 357 с.
- 15. Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Ч. 2. Случайные поля. М.: Наука. 1978. 463 с.
- 16. Dana R.A. Statistics of Sampled Rician Fading. Alexandria, 1993. 61 p. https://doi.org/10.21236/ada212829
- 17. Simon M.K., Alouini M-S. Digital communication over fading channels: a unified approach to performance Analysis. John Wiley & Sons, Inc. 2000. 546 p.
- 18. Цимбал В.А., Песков М.В., Чипига А. Ф., Пашинцев В.П. Повышение точности прогнозирования помехоустойчивости систем спутниковой радиосвязи по данным мониторинга индекса ионосферных мерцаний // Сб. трудов 23-й Междунар. науч.-технич. конф. «Радиолокация, навигация, связь». В 2-х томах. Т. 2. Воронеж: Изд-во «Научно-исследовательские публикации» (ООО «ВЭЛБОРН»). С. 575-582.
- Pashintsev V.P., Peskov M.V., Senokosov M.A., Mikhailov D.A., Skorik A.D. A system for measuring the scintillation index based on the results of monitoring of small-scale fluctuations in the total electron content of the ionosphere // GPS Solutions. Vol. 28. Issue 1. 2024. https://doi.org/10.1007/s10291-023-01550-1

- 20. Пашинцев В.П., Песков М.В., Смирнов В.М., Смирнова Н.В., Тынянкин С.И. Методика выделения мелкомасштабных вариаций полного электронного содержания ионосферы по данным трансионосферного зондирования // Радиотехника и электроника, 2017, Т.62, №12, с. 1182-1189. https://doi.org/10.7868/S0033849417110158
- Захаров А. И., Яковлев О. И., Смирнов В. М. Спутниковый мониторинг Земли: Радиолокационное зондирование поверхности. М.: КРАСАНД. 2012. 248 с.
- 22. Колосов М. А., Арманд Н., Яковлев О. И. Распространение радиоволн при космической связи. М.: Связь. 1969. 155 с.
- Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. Радио.1970.
 728 с.
- 24. AstraLinux [Интернет]. ООО «РусБИТех-Астра»; Доступно на: https://astralinux.ru
- 25. Docker [Интернет]. Docker Inc.; Доступно на: https://www.docker.com/
- 26. Docker Compose [Интернет]. Docker Inc.; Доступно на: https://docs.docker.com/compose/
- 27. Apache Kafka [Интернет]. Apache Software Foundation; Доступно на: https://kafka.apache.org/
- 28. Apache Spark [Интернет]. The Apache Software Foundation; Доступно на: https://spark.apache.org/
- 29. ClickHouse [Интернет]. ClickHouse, Inc. HQ in the Bay Area, CA and Amsterdam, NL.; Доступно на: https://clickhouse.com
- 30. Grafana [Интернет]. Grafana Labs; Доступно на: https://grafana.com/
- 31. Fremouw E. J. [и др.]. Early results from the DNA Wideband satellite experiment-Complex-signal scintillation // Radio Science. 1978. № 1 (13). C. 167–187.
- 32. Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (1978). Early results from the DNA wideband satellite experiment– complex-signal scintillation // Radio Science, 1978, № 1(13), pp.167–187. https://doi.org/10.1029/RS013i001p00167

- 33. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication, Geneva, 2012, 24 p.
- 34. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: Издательский дом «Вильямс». 2003. 1104 с.
- 35. Пенин П.И. Системы передачи цифровой информации. М.: Сов. Радио. 1976.
 364 с.
- 36. Немировский М.С., Локшин Б.А., Аронов Д.А. Основы построения систем спутниковой связи. М.: Горячая линия Телеком. 2021. 432 с.
- 37. Журавлев В.И, Руднев А.Н. Цифровая фазовая модуляция. Монография. М.: Радиотехника. 2012. 208 с.

Для цитирования:

Пашинцев В.П., Копытов В.В., Михайлов Д.А., Бойченко И.А., Диптан П.А. Прогнозирование помехоустойчивости спутниковой системы Коспас-Сарсат на основе результатов GPS-мониторинга мелкомасштабных возмущений ионосферы. // Журнал радиоэлектроники. – 2024. – №. 12. https://doi.org/10.30898/1684-1719.2024.12.1