P

DOI: https://doi.org/10.30898/1684-1719.2024.12.11

УДК: 621.396.96

АЛГОРИТМ ОБНАРУЖЕНИЯ ЗОНДИРУЮЩИХ СИГНАЛОВ С ЛИНЕЙНОЙ ЧАСТОТНОЙ МОДУЛЯЦИЕЙ НА ОСНОВЕ НЕЙРОСЕТЕВОЙ ОБРАБОТКИ ИХ СПЕКТРОВ НА ВЫХОДЕ АВТОКОРРЕЛЯЦИОННОЙ СХЕМЫ

М.О. Бердник

Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» 394064, Воронеж, ул. Старых Большевиков, д. 64

Статья поступила в редакцию 28 июля 2024 г.

Аннотация. В статье рассмотрены особенности применения нейросетевого подхода в задаче обнаружения сигналов с линейной частотной модуляцией на выходе автокорреляционной схемы. Полученные результаты демонстрируют существенное снижение количества ложных тревог по сравнению с традиционным способом, основанным на пороговой обработке.

Ключевые слова: радиолокация, линейная частотная модуляция, пороговая обработка, автокорреляционная схема, ложная тревога, нейронные сети, глубокое обучение,

Автор для переписки: Бердник Максим Олегович, m.berdnik@internet.ru

Введение

В современном мире государства, имеющие собственные космические системы дистанционного зондирования Земли, применяют их для обзора земной и морской поверхностей, в том числе на территории Российской Федерации (РФ). Среди них особое место занимают радиолокационные станции (РЛС)

космического базирования (КБ) вследствие их основного преимущества, состоящего во всепогодности и круглосуточности.

Для определения участков территории РФ, которые привлекают повышенное внимание операторов подобных систем, необходимо осуществлять прием и технический анализ сигналов РЛС КБ с использованием сети приемных устройств, расположенных на территории РФ.

1. Пороговая обработка

В основном, РЛС КБ функционируют в L, S, C, X диапазонах в импульсном режиме [1]. В данных системах в качестве зондирующих сигналов применяются последовательности широкополосных импульсов с линейной частотной модуляцией (ЛЧМ). Параметры этих сигналов, такие как несущая частота $f_{\rm H}$ скорость и знак изменения частоты внутриимпульсной модуляции, длительность импульсов $\tau_{\rm H}$ и период их следования T, определяются конкретным режимом съемки. Пример временного представления импульсной последовательности с ЛЧМ при отношении сигнал/шум (ОСШ) 5 дБ приведен на рис. 1.

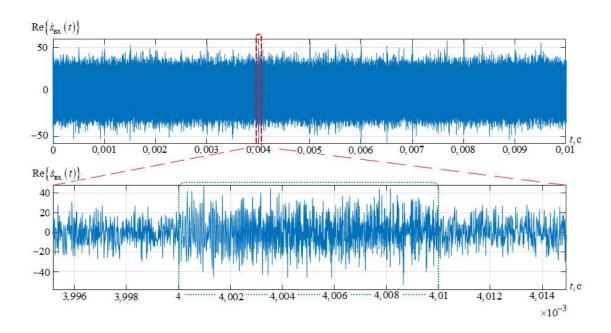


Рис. 1. Пример временного представления аддитивной смеси ЛЧМ-сигнала и гауссовской помехи (шума) при ОСШ 5 дБ.

Таким образом, задача обнаружения факта облучения приемного поста сводится к задаче обнаружения и оценки частотно-временных параметров последовательности ЛЧМ-импульсов. Оптимальный на фоне квазибелого шума (гауссовского шума с равномерной спектральной плотностью в пределах эффективной полосы частот сигнала) реализуется с помощью многоканального согласованного фильтра, т.е. линейного фильтра, импульсная характеристика которого является сопряженной с сигналом [2]. Однако, реализация такого подхода в условиях существенной априорной неопределенности параметров принимаемых ЛЧМ-импульсов сопряжена с высокими требованиями к вычислительной мощности устройства обработки. В такой ситуации одним из эффективных квазиоптимальных методов является реализация автокорреляционной схемы (рис. 2) [3]. Суть ее работы состоит в умножении принятой смеси сигнала и помехи на свою же копию, смещенную во времени на время задержки τ_3 , при выборе которого выполнены условия $au_{\Pi} < au_{3} << au_{c}$, где au_{Π} и au_{c} — интервалы корреляции помехи и сигнала соответственно, $\Delta f_{\mathrm{YBY}} \approx 1/\tau_{\mathrm{\Pi}}$ и $f_{\mathrm{\Phi HY}} \approx 1/\tau_{\mathrm{c}}$. Над результатом перемножения осуществляется операция интегрирования в течение временного интервала $\tau_{\rm c}$ (т. е. низкочастотная фильтрация).

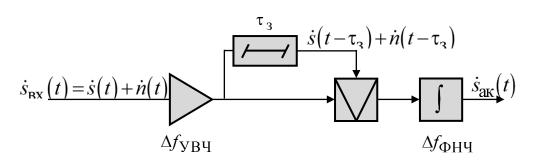


Рис. 2. Структурная схема реализации автокорреляционного приема.

Данная схема эффективна при ОСШ не менее минус 5 ... минус 3 дБ, и так как в большинстве практических случаев прием сигналов РЛС КБ осуществляется по главному лепестку (ГЛ) диаграммы направленности их антенны (ДНА) это условие выполняется, и применение автокорреляционной схемы в этой задаче является рациональным. В дополнение к этому

осуществляют накопление пачки ЛЧМ-импульсов, что также позволяет увеличить ОСШ на выходе автокорреляционной схемы.

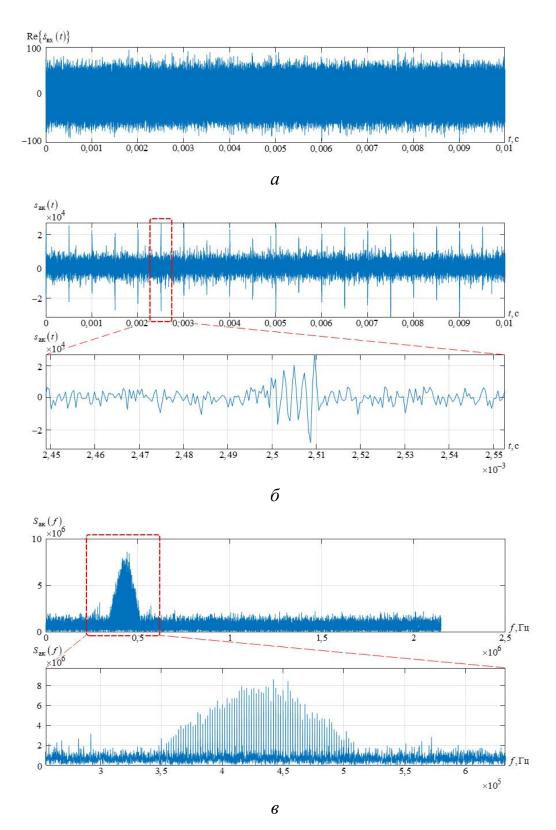


Рис. 3. Аддитивная смесь сигнала и гауссовской помехи на различных этапах автокорреляционной обработки при ОСШ 0 дБ.

Пример входной последовательности ЛЧМ-импульсов на фоне гауссовского шума с равномерной спектральной плотностью и результата ее обработки во временной и частотной областях приведен на рис. 3, где: а) временное представление последовательности ЛЧМ-импульсов на входе приемного устройства; б) временное представление выходного сигнала автокоррелятора после прохождения через фильтр низких частот; в) спектральное представление выходного сигнала автокоррелятора после прохождения через фильтр низких частот.

Так как перемножение сигналов и низкочастотная фильтрация по сути являются процедурой демодуляции последовательности ЛЧМ-импульсов, то на выходе автокорреляционной схемы формируется последовательность простых радиоимпульсов (РИ), несущая частота которых пропорциональна скорости изменения частоты обрабатываемого ЛЧМ-сигнала и временной задержки τ_3 .

Вариантом окончательного этапа процесса принятия решения о наличии или отсутствии сигнала является пороговая обработка спектра (рис. 3, в) и оценка наличия периодических частотных составляющих в его структуре.

Такой подход показал достаточно высокую эффективность при условии равномерности спектра шумовой составляющей принятого сигнала. Однако в реальной обстановке это условие зачастую не выполняется вследствие наличия сторонних источников мешающих сигналов и помех.

Так, на рис. 4 показан вид входной реализации сигнала при отсутствии ЛЧМ-последовательности и результата ее обработки. Как видно (рис. 4, в), в спектре присутствуют частотные составляющие, превышающие уровень шума, вследствие чего принимается ошибочное решение о наличии ЛЧМ-последовательности, то есть имеет место ложная тревога (ЛТ).

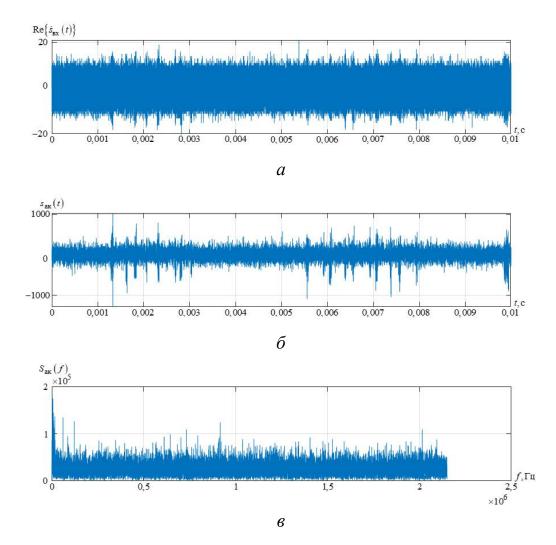


Рис. 4. Запись сигнала в реальной шумовой и помеховой обстановке на различных этапах автокорреляционной обработки, ложно определенная схемой как имеющая импульсную ЛЧМ-последовательность (ложная тревога).

На рис. 5 продемонстрирован вид входной реализации смеси сигнала с присутствующей ЛЧМ-последовательностью и помеховой периодической последовательностью и результата ее обработки. При тех же пороговых параметрах, что и для записи, продемонстрированной на рис. 4, принимается решение об отсутствии ЛЧМ-последовательности, то есть имеет место пропуск цели (ПЦ).

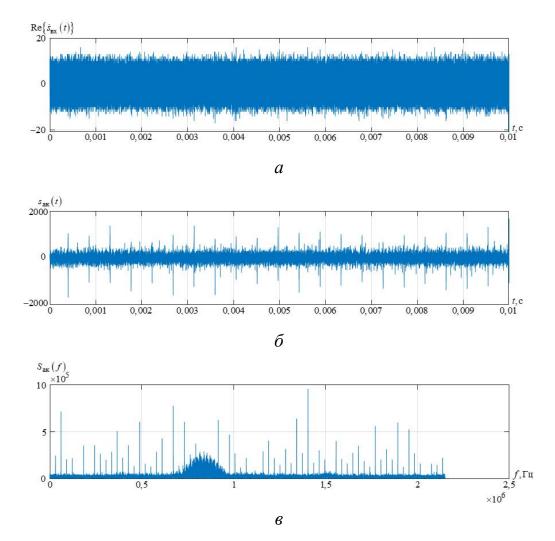


Рис. 5. Запись сигнала в реальной шумовой и помеховой обстановке на различных этапах автокорреляционной обработки, ложно определенная схемой как шумовая (пропуск цели).

Эти ситуации приводят к необходимости поиска новых средств и инструментов, которые при решении данной задачи позволят снизить количество ЛТ до требуемого уровня (менее 10^{-2}) при незначительном увеличении количества пропусков цели (менее 10 %).

2. Нейросетевой подход

В последнее время высокую эффективность обнаружения и классификации сигналов на фоне помех различного вида демонстрируют подходы, основанные на применении технологий машинного обучения [4,5]. В связи с этим был апробирован нейросетевой подход к решению задачи снижения количества ложных тревог.

Для обучения и тестирования нейросети были сформированы 5 наборов записей [6], включающие как реальные, так и синтезированные реализации сигналов и помех. Параметры каждой записи: количество временных отсчетов в записи $N_{\rm orc} = 9.3 \cdot 10^5$, длительность $t_{\rm san} = 10\,$ мс, для синтезированных записей девиация, длительность, период повторения и начальная частота ЛЧМ-импульсов задавались случайными и равномерно распределенными на интервалах $\Delta f \in [8...60]\,$ МГц, $\tau_{\rm u} \in [5...25]\,$ мкс, $T \in [150...500]\,$ мкс и $f_H \in [2...25]\,$ МГц соответственно. Детальные характеристики наборов представлены в таблице 1.

Таблица 1. Перечень наборов данных для нейронной сети.

Название	Характер данных		осш,		
набора		Всего	с ЛЧМ-сигналом	Без ЛЧМ-сигнала	дБ
Набор №1	реальные записи	2227	114	2113	_
Набор №2	синтезированные записи	2227	114	2113	-5 5
Набор №3	синтезированные записи	2227	114	2113	-10 0
Набор №4	смешанные (объединение наборов №1 и №2)	4454	228	4226	-5 5
Набор №5	смешанные (объединение наборов №1 и №3)	4454	228	4226	-10 0

Поиск архитектуры сети, ее обучение и последующее тестирование на указанных наборах данных (таблица 1) осуществлялась с применением следующих программных средств: интерпретатор языка программирования Руthon версии 3.10, открытая программная библиотека машинного обучения TensorFlow-GPU версии 2.8.0, фреймворк Keras версии 2.8.0.

Обучение и тестирование проводилось на ЭВМ со следующими характеристиками: Intel(R) Core(TM) i5-4460 CPU @ 3.20 ГГц; 2xDDR3-1600 AMD 8Gb; 2xDDR3-1600 Kingston 4 Gb (суммарный объем: 24 Гб); GPU ASUS NVIDIA GeForce RTX 3060 12 Gb; HDD Samsung 320 Gb 7200 rpm.

По результатам поиска наиболее подходящей архитектуры выбор был сделан в пользу сети, продемонстрировавшей наиболее высокие результаты, с архитектурой, приведенной на рис. 6.

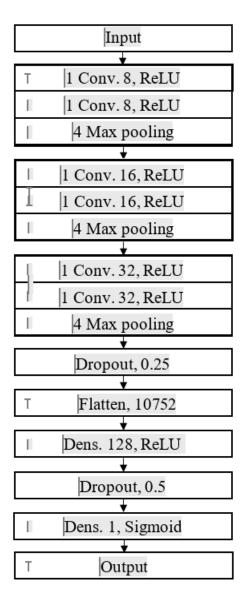


Рис. 6. Архитектура нейронной сети.

Сеть включает 8 слоев, первые 6 из которых являются одномерными сверточными (Conv1D), а 2 оконечных – полносвязными (Dense). В сети также применяются пулинговые слои (MaxPooling1D), слои дропаута с параметрами 0,25 и 0,5, а также слой Flatten для перехода от сверточных к полносвязному слою. Выходной слой сети представлен одним нейроном с сигмоидальной функцией активации. В качестве функции активации остальных слоев использовалась ReLU. Обучение модели осуществлялось с использованием оптимизатора Adam при скорости обучения 10^{-6} , в качестве функции потерь использовалась бинарная кроссэнтропия.

Результаты, полученные при оценке точности обнаружения ЛЧМ-сигналов в каждом из наборов, приведены в таблице 2. Для каждого из наборов указана

достигнутая точность детектирования $P_{\text{дет}}$, количество ЛТ $N_{\text{ЛТ}}$ (абсолютное и относительное значения), количество ПЦ $N_{\text{ПЦ}}$ (абсолютное и относительное значения).

Таблица 2. Результаты тестирования нейронной сети.

			тировани	n nenpom	lon cem.	
Параметры те						
набор	II-6 Mal	11-6 No	11-6 No.2	11-6 No.4	11-6 Mof	
Помомующим	Набор №1	Набор №2	Набор №3	Набор №4	Набор №5	
Параметры						
обучающего набора Кол-во записей в Всего		2227			4454	
наборе						
наоорс	с ЛЧМ	114			228	
	без ЛЧМ	2113			4226	
Набор №1	$P_{{ t ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	99,78 %	97,26 %	95,37 %	98,49 %	97,57 %
	$N_{ m ЛT}$	0 / 2113	0 / 2113	0 / 2113	0 / 4226	0 / 4226
		0,0 %	0,0 %	0,0 %	0,0 %	0,0 %
	$N_{\Pi \coprod}$	5 / 114	61 / 114	103 / 114	67 / 228	108 / 228
		4,39 %	53,51 %	90,35 %	29,39 %	47,37 %
Набор №2	$P_{\scriptscriptstyle m Дет}$	99,19 %	99,46 %	97,30 %	99,33 %	98,25 %
	$N_{ m JT}$	3 / 2113	0 / 2113	0 / 2113	3 / 4226	3 / 4226
		0,14 %	0,0 %	0,0 %	0,07 %	0,07 %
	$N_{\Pi extsf{I}}$	15 / 114	12 / 114	60 / 114	27 / 228	75 / 228
		13,16 %	10,53 %	52,63 %	11,84 %	32,89 %
Набор №3	$P_{\mathtt{дет}}$	98,29 %	99,37 %	97,71 %	98,83 %	98,00 %
	$N_{ m JT}$	6 / 2113	0 / 2113	0 / 2113	6 / 4226	6 / 4226
		0,28 %	0,0 %	0,0 %	0,14 %	0,14 %
	$N_{\Pi extsf{I}}$	32 / 114	14 / 114	51 / 114	46 / 228	83 / 228
		28,07 %	12,28 %	44,74 %	20,17 %	36,40 %
Набор №4	$P_{\mathtt{дет}}$	99,77 %	99,55 %	97,26 %	99,66 %	98,52 %
	$N_{ m JT}$	0 / 2113	0 / 2113	0 / 2113	0 / 4226	0 / 4226
		0,0 %	0,0 %	0,0 %	0,0 %	0,0 %
	$N_{\Pi extsf{I}}$	5 / 114	10 / 114	61 / 114	15 / 228	66 / 228
		4,39 %	8,78 %	53,51 %	6,58 %	28,95 %
Набор №5	$P_{{ t ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	99,51 %	99,06 %	97,08 %	99,28 %	98,29 %
	$N_{ m \Pi T}$	0 / 2113	0 / 2113	0 / 2113	0 / 4226	0 / 4226
		0,0 %	0,0 %	0,0 %	0,0 %	0,0 %
	$N_{\Pi extsf{I}}$	11 / 114	21 / 114	65 / 114	32 / 228	76 / 228
		9,65 %	18,42 %	57,02 %	14,03 %	33,33 %
Результаты,	$P_{ exttt{ iny det}}$	95,91 %	99,82 %	98,29 %	86,62 %	85,59 %
полученные способом	$N_{ m JIT}$	83 / 2113	0 / 2113	0 / 2113	580 / 4226	580 / 4226
пороговой обработки		3,93 %	0 %	0 %	13,73 %	13,73 %
	$N_{\Pi extsf{I}}$	8 / 114	4 / 114	38 / 114	16 / 228	62 / 228
		7,02 %	3,51 %	33,33 %	7,02 %	27,19 %

Из полученных результатов (таблица 2) следует, что сети, обученные на реальных и смешанных наборах (наборы №1, 4 и 5), демонстрируют отсутствие ложных тревог. При этом отметим, что наилучший результат по всем наборам демонстрирует сеть, обученная на наборе №4, так как во всех тестах отсутствуют ЛТ, а относительное количество ПЦ на наборах с ОСШ не хуже минус 5 дБ не превышает 10%. Исключением являются наборы №3 и №5,

что связано со значительным количеством записей с ОСШ менее минус 5 дБ, при котором обнаружение сигнала даже оптимальными методами характеризуется низким качеством.

Заключение

Таким образом, применение нейросетевого подхода позволило относительно просто устранить ложные тревоги в сложной сигнально-помеховой обстановке, что при использовании традиционных методов представляет собой существенно более сложную задачу.

Литература

- Купряшкин И.Ф., Лихачев В.П. Космическая радиолокационная съемка земной поверхности в условиях помех: монография // Купряшкин И.Ф., Лихачев В.П. Воронеж: ИПЦ «Научная книга». 2014.
- 2. Тихонов В.И. Оптимальный прием сигналов. 1983.
- 3. Лихачев В.П. и др. Обоснование требований к вычислительному устройству цифрового автокорреляционного приемника сигналов РСА //Журнал радиоэлектроники. -2014. -№. 1. C. 9-9.
- 4. Akyon F.C. Deep Learning in Electronic Warfare Systems: Automatic Pulse Detection and Intra-Pulse Modulation Recognition: дис. Bilkent Universitesi (Turkey), 2020.
- 5. Франсуа Ш. Глубокое обучение на Python. "Издательский дом "Питер"", 2018.
- 6. Груздев А.В. Предварительная подготовка данных в Python: Том 1. Инструменты и валидация. – М.: ДМК Пресс – 2023.

Для цитирования:

Бердник М.О. Алгоритм обнаружения зондирующих сигналов с линейной частотной модуляцией на основе нейросетевой обработки их спектров на выходе автокорреляционной схемы. // Журнал радиоэлектроники. -2024. -№. 12. https://doi.org/10.30898/1684-1719.2024.12.11