Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.12.18
Development of a W-BAND
crossed-field amplifier
D.A. Sidorov1,2, A.V. Sukhoverkhii1, R.M. Rozental2
1 Joint Stock Company Scientific and Production Enterprise «Salyut»,
603107, Nizhny Novgorod, str. Larina, 7, b. 4, off. 42642 National Research Lobachevsky State University,
603022, Nizhny Novgorod, ave. Gagarina, 23
The paper was received September 13, 2024.
Abstract. The results of the development of a W-band crossed-field amplifier are presented. The optimal geometry of the slow-wave system was determined and its dispersion characteristics were calculated. Three-dimensional modeling using the large-particle method is performed, which demonstrates a gain of up to 15 dB and a maximum output power level of more than 1 kW.
Key words: W-band, crossed-field amplifier.
Financing: The work was carried out under a government contract 20411.195.0192501.11.003
Corresponding author: Sidorov Daniil Alexandrovich, daniil_sidorov@mail.ru
References
1. Linde G.J., Ngo M.T., Danly B.G., Cheung W.J., Gregers-Hansen V. WARLOC: A high-power coherent 94 GHz radar // IEEE Transactions on Aerospace and Electronic Systems. – 2008. – Ò. 44. – ¹. 3. – P. 1102-1117. https://doi.org/10.1109/TAES.2008.4655367.
2. MacDonald M., Abouzahra M., Stambaugh J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory // Remote Sensing. – 2024. – Ò. 16. – ¹. 9. – P. 1530. https://doi.org/10.3390/rs16091530.
3. Zasypkin E.V. Multicavity W-Band Continuous-Wave Gyroklystron // Radiophys Quantum El. – 2022. – Ò. 65. – ¹5. – Ñ. 397–409. https://doi.org/10.1007/s11141-023-10222-6
4. Samsonov S.V., Denisov G.G., Gachev I.G., Bogdashov A.A. CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube //IEEE Electron Device Letters. – 2020. – Ò. 41. – ¹. 5. – P. 773-776. https://doi.org/10.1109/LED.2020.2980572.
5. Liu G., Jiang W., Yao Y., Wang Y., Cao Y., Wang J., Luo Y. Long pulse and high duty operation of a W-band gyrotron traveling wave tube //IEEE Electron Device Letters. – 2023. – Ò. 44. – ¹. 5. – P. 829-832. https://doi.org/10.1109/LED.2023.3255303.
6. Yadav S.G., Thottappan M. Design and simulation investigations of stagger-tuned W-band gyro-twystron // IEEE Transactions on Electron Devices. – 2022. – Ò. 69. – ¹. 2. – P. 777-784. https://doi.org/10.1109/TED.2021.3137366.
7. Yadav S.G., Babu V.V., Thottappan M. Gain and Bandwidth Improvement Studies of Millimeter Wave Periodically Dielectric Loaded Gyro-Twystron Amplifier // IEEE Transactions on Electron Devices. – 2022. – Ò. 69. – ¹. 12. – P. 7059-7066. https://doi.org/10.1109/TED.2022.3217760.
8. Zhang X., Feng J., Cai J., Du Y., Dong R., Wu X. Power enhancement in W-band pulsed folded waveguide TWT // IEEE Transactions on Electron Devices. – 2021. – Ò. 68. – ¹. 5. – P. 2504-2508. https://doi.org/10.1109/TED.2021.3068692.
9. Pasour J., Wright E., Nguyen K.T., Balkcum A., Wood F.N., Myers R.E., Levush B. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz // IEEE Transactions on Electron Devices. – 2014. – Ò. 61. – ¹. 6. – P. 1630-1636. https://doi.org/10.1109/TED.2013.2295771.
10. Gamzina D., Barnett L.R., Ravani B., Luhmann N.C. Mechanical design and manufacturing of W-band sheet beam klystron // IEEE Transactions on electron Devices. – 2017. – Ò. 64. – ¹. 6. – P. 2675-2682. https://doi.org/10.1109/TED.2017.2690642.
11. Ivanov A.A., Nagornuk M.S., Smirnov A.E., Vilkov M.N., Ginzburg N.S., Rozental R.M. Development of Wide-Band Chaotic Oscillators Based on a Family of Pulsed W-Band TWTs // Bull. Russ. Acad. Sci. Phys. – 2020. – Ò. 84. – C. 184–188. https://doi.org/10.3103/S1062873820020136
12. Ivanov A.A. Increasing the efficiency of W-band TWTs with constant electron beam energy parameters // Microwave electronics and microelectronics. – 2024 – P. 151-154. (in Russian)
13. Gilmour Jr A.S., Gilmour A.S. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. – Artech House, 2011. – 859 P.
14. Ivanov I.M., Scripkin N.I., Shmelev A.V. Three-millimeter wavelength range magnetrons with the possibility of tuning and stabilization frequency // Journal Electromagnetic Waves and Electronic Systems. – 2016. – Ò. 21. – ¹. 10. – P. 68-72. (In Russian)
15. Verma R.K., Maurya S., Singh V.V.P. A review on the advent of magnetrons at high frequency (mm and THz) gateway // Journal of Electromagnetic Waves and Applications. – 2018. – Ò. 32. – No. 1. – Ñ. 113-127. https://doi.org/10.1080/09205071.2017.1377641
16. Vagin A.I., Evdokimov Yu.V., Ivanov I.M., Petyushin N.V., Skripkin N.I. Transmitter of the inspection system based on a short-pulse magnetron of the W-band in the mode of multi-position location and radio illumination // Microwave electronics and microelectronics. – 2024 – V.1. – P. 577-582 (In Russian)
17. Stalmakhov V.S. Fundamentals of Electronics of Microwave Crossed Field Devices. – Moscow, Soviet Radio, 1963. – 366 p. (In Russian)
18. Tsimring S.E. Electron Beams and Microwave Vacuum Electronics. – Hoboken, NJ, USA: Wiley, 2007. – 573 p.
19. Silin R.A., Sazonov V.P. Slow-wave systems. – Moscow, Soviet Radio, 1966. – 632 p. (In Russian)
20. Exelby S.C., Greening G.B., Jordan N.M., Packard D.A., Simon D., Lau Y.Y., Hoff B.W., Gilgenbach R.M. High-power recirculating planar crossed-field amplifier design and development // IEEE Transactions on Electron Devices. – 2018. – Ò. 65. – ¹. 6. – P. 2361-2365. https://doi.org/10.1109/TED.2018.2790802.
21. Pearlman M., Watrous J., Smithe D., Yue A., Garner A.L., Worthington M., Browning J. A Simulation Study of the Gain Limits of a Crossed-Field Amplifier // 2023 IEEE International Conference on Plasma Science (ICOPS). – P. 1-1. https://doi.org/10.1109/ICOPS45740.2023.10481390.
For citation:
Sidorov D.A., Sukhoverkhii A.V., Rozental R.M. Development of a W-band crossed-field amplifier. // Journal of Radio Electronics. – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.18 (In Russian)