Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.12.18

 

 

 

Development of a W-BAND
crossed-field amplifier

 

D.A. Sidorov1,2, A.V. Sukhoverkhii1, R.M. Rozental2

 

1 Joint Stock Company Scientific and Production Enterprise «Salyut»,
603107, Nizhny Novgorod, str. Larina, 7, b. 4, off. 4264

2 National Research Lobachevsky State University,
603022, Nizhny Novgorod, ave. Gagarina, 23

 

The paper was received September 13, 2024.

 

Abstract. The results of the development of a W-band crossed-field amplifier are presented. The optimal geometry of the slow-wave system was determined and its dispersion characteristics were calculated. Three-dimensional modeling using the large-particle method is performed, which demonstrates a gain of up to 15 dB and a maximum output power level of more than 1 kW.

Key words: W-band, crossed-field amplifier.

Financing: The work was carried out under a government contract 20411.195.0192501.11.003

Corresponding author: Sidorov Daniil Alexandrovich, daniil_sidorov@mail.ru

References

1. Linde G.J., Ngo M.T., Danly B.G., Cheung W.J., Gregers-Hansen V. WARLOC: A high-power coherent 94 GHz radar // IEEE Transactions on Aerospace and Electronic Systems. – 2008. – Ò. 44. – ¹. 3. – P. 1102-1117. https://doi.org/10.1109/TAES.2008.4655367.

2. MacDonald M., Abouzahra M., Stambaugh J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory // Remote Sensing. – 2024. – Ò. 16. – ¹. 9. – P. 1530. https://doi.org/10.3390/rs16091530.

3. Zasypkin E.V. Multicavity W-Band Continuous-Wave Gyroklystron // Radiophys Quantum El. – 2022. – Ò. 65. – ¹5. – Ñ. 397–409. https://doi.org/10.1007/s11141-023-10222-6

4. Samsonov S.V., Denisov G.G., Gachev I.G., Bogdashov A.A. CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube //IEEE Electron Device Letters. – 2020. – Ò. 41. – ¹. 5. – P. 773-776. https://doi.org/10.1109/LED.2020.2980572.

5. Liu G., Jiang W., Yao Y., Wang Y., Cao Y., Wang J., Luo Y. Long pulse and high duty operation of a W-band gyrotron traveling wave tube //IEEE Electron Device Letters. – 2023. – Ò. 44. – ¹. 5. – P. 829-832. https://doi.org/10.1109/LED.2023.3255303.

6. Yadav S.G., Thottappan M. Design and simulation investigations of stagger-tuned W-band gyro-twystron // IEEE Transactions on Electron Devices. – 2022. – Ò. 69. – ¹. 2. – P. 777-784. https://doi.org/10.1109/TED.2021.3137366.

7. Yadav S.G., Babu V.V., Thottappan M. Gain and Bandwidth Improvement Studies of Millimeter Wave Periodically Dielectric Loaded Gyro-Twystron Amplifier // IEEE Transactions on Electron Devices. – 2022. – Ò. 69. – ¹. 12. – P. 7059-7066. https://doi.org/10.1109/TED.2022.3217760.

8. Zhang X., Feng J., Cai J., Du Y., Dong R., Wu X. Power enhancement in W-band pulsed folded waveguide TWT // IEEE Transactions on Electron Devices. – 2021. – Ò. 68. – ¹. 5. – P. 2504-2508. https://doi.org/10.1109/TED.2021.3068692.

9. Pasour J., Wright E., Nguyen K.T., Balkcum A., Wood F.N., Myers R.E., Levush B. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz // IEEE Transactions on Electron Devices. – 2014. – Ò. 61. – ¹. 6. – P. 1630-1636. https://doi.org/10.1109/TED.2013.2295771.

10. Gamzina D., Barnett L.R., Ravani B., Luhmann N.C. Mechanical design and manufacturing of W-band sheet beam klystron // IEEE Transactions on electron Devices. – 2017. – Ò. 64. – ¹. 6. – P. 2675-2682. https://doi.org/10.1109/TED.2017.2690642.

11. Ivanov A.A., Nagornuk M.S., Smirnov A.E., Vilkov M.N., Ginzburg N.S., Rozental R.M. Development of Wide-Band Chaotic Oscillators Based on a Family of Pulsed W-Band TWTs // Bull. Russ. Acad. Sci. Phys. – 2020. – Ò. 84. – C. 184–188. https://doi.org/10.3103/S1062873820020136

12. Ivanov A.A. Increasing the efficiency of W-band TWTs with constant electron beam energy parameters // Microwave electronics and microelectronics. – 2024 – P. 151-154. (in Russian)

13. Gilmour Jr A.S., Gilmour A.S. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. – Artech House, 2011. – 859 P.

14. Ivanov I.M., Scripkin N.I., Shmelev A.V. Three-millimeter wavelength range magnetrons with the possibility of tuning and stabilization frequency // Journal Electromagnetic Waves and Electronic Systems. –  2016. – Ò. 21. – ¹. 10. – P. 68-72. (In Russian)

15. Verma R.K., Maurya S., Singh V.V.P. A review on the advent of magnetrons at high frequency (mm and THz) gateway // Journal of Electromagnetic Waves and Applications. – 2018. – Ò. 32. – No. 1. – Ñ. 113-127. https://doi.org/10.1080/09205071.2017.1377641

16. Vagin A.I., Evdokimov Yu.V., Ivanov I.M., Petyushin N.V., Skripkin N.I. Transmitter of the inspection system based on a short-pulse magnetron of the W-band in the mode of multi-position location and radio illumination // Microwave electronics and microelectronics. – 2024 – V.1. – P. 577-582 (In Russian)

17. Stalmakhov V.S. Fundamentals of Electronics of Microwave Crossed Field Devices. – Moscow, Soviet Radio, 1963. – 366 p. (In Russian)

18. Tsimring S.E. Electron Beams and Microwave Vacuum Electronics. – Hoboken, NJ, USA: Wiley, 2007. – 573 p.

19. Silin R.A., Sazonov V.P. Slow-wave systems. – Moscow, Soviet Radio, 1966. – 632 p. (In Russian)

20. Exelby S.C., Greening G.B., Jordan N.M., Packard D.A., Simon D., Lau Y.Y., Hoff B.W., Gilgenbach R.M. High-power recirculating planar crossed-field amplifier design and development // IEEE Transactions on Electron Devices. – 2018. – Ò. 65. – ¹. 6. – P. 2361-2365. https://doi.org/10.1109/TED.2018.2790802.

21. Pearlman M., Watrous J., Smithe D., Yue A., Garner A.L., Worthington M., Browning J. A Simulation Study of the Gain Limits of a Crossed-Field Amplifier // 2023 IEEE International Conference on Plasma Science (ICOPS). – P. 1-1. https://doi.org/10.1109/ICOPS45740.2023.10481390.

For citation:

Sidorov D.A., Sukhoverkhii A.V., Rozental R.M. Development of a W-band crossed-field amplifier. // Journal of Radio Electronics. – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.18 (In Russian)