Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.12.19

 

 

 

Evaluation of charge mobility in the hosts
of emitting layers of anthracene-based organic
light-emitting diodes using multiscale modeling.

 

A.Yu. Sosorev1, N.O. Dubinets1,
S.A. Stakharny2, A.V. Nuriev2, A.A. Morozov
2

 

1Enikolopov Institute of Synthetic Polymeric Materials, RAS,
117393, Russia, Moscow, Profsoyuznaya str., 70

2JSC «Central Research Institute «Tsiklon»,
107207, Russia, Moscow, Shchelkovskoe ave., 77

 

The paper was received December 10, 2024.

 

Abstract. Organic light emitting diodes (OLEDs) are actively used in contemporary displays, microdisplays and other devices for information visualization. The probability of variation of organic semiconductors molecular structures allows to tune and improve the characteristics of these devices, which is particularly important for blue OLEDs. For rational molecular design of materials for OLEDs, prediction of their properties using multiscale computer modelling is highly actual. In this study, this method is applied to address charge-transport properties of the films of four carbazole- and anthracene-based hosts, which are used in light-emitting layers of OLEDs. Reorganization energies, standard deviation of frontier orbital energy levels, and charge transfer integrals were calculated and compared. Finally, charge mobilities were calculated from these parameters, and the former were found to differ in four orders of magnitude. It was found that carbazole-based host mCP.

Key words: OLED, DFT, anthracene hosts, mobility

Financing: Ministry of Science and Higher Education of the Russian Federation (project FFSM-2022-0004).

Corresponding author: Sosorev Andrey Yur’evich, sosorev@ispm.ru

References

1. Tankelevičiūt E., Samuel I. D. W., Zysman-Colman E. The Blue Problem: OLED Stability and Degradation Mechanisms // The Journal of Physical Chemistry Letters. ‒ 2024. ‒ T. 15, ¹ 4. ‒ C. 1034-1047.

2. Li H., Qiu Y., Duan L. Multi-scale calculation of the electric properties of organic-based devices from the molecular structure // Organic Electronics. ‒ 2016. ‒ T. 33. ‒ C. 164-171.

3. Suzuki F., Kubo S., Fukushima T., Kaji H. Effects of Structural and Energetic Disorders on Charge Transports in Crystal and Amorphous Organic Layers // Scientific Reports. ‒ 2018. ‒ T. 8, ¹ 1. ‒ C. 5203.

4. Mondal A., Paterson L., Cho J., Lin K.-H., van der Zee B., Wetzelaer G.-J. A. H., Stankevych A., Vakhnin A., Kim J.-J., Kadashchuk A., Blom P. W. M., May F., Andrienko D. Molecular library of OLED host materials–Evaluating the multiscale simulation workflow // Chemical Physics Reviews. ‒ 2021. ‒ T. 2, ¹ 3.

5. Köhler A., Bässler H. Triplet states in organic semiconductors // Materials Science and Engineering: R: Reports. ‒ 2009. ‒ T. 66, ¹ 4. ‒ C. 71-109.

6. Cho S. M., Youn K. M., Yang H. I., Lee S. H., Naveen K. R., Karthik D., Jeong H., Kwon J. H. Anthracene-dibenzofuran based electron transport type hosts for long lifetime multiple resonance pure blue OLEDs // Organic Electronics. ‒ 2022. ‒ T. 105. ‒ C. 106501.

7. Nguyen T. B., Nakanotani H., Adachi C. An Overlooked Charge-Transfer Interaction in the Interfacial Triplet–Triplet Upconversion Process in Blue Organic Light-Emitting Diodes // Advanced Optical Materials. ‒ 2022. ‒ T. 10, ¹ 18. ‒ C. 2200704.

8. Cai W., Li W., Song X., Zheng X., Guo H., Lin C., Yang D., Ma D., Ng M., Tang M.-C. Host Engineering of Deep-Blue-Fluorescent Organic Light-Emitting Diodes with High Operational Stability and Narrowband Emission // Advanced Science. ‒ 2024. ‒ T. 11, ¹ 43. ‒ C. 2407278.

9. Kuang C., Li S., Murtaza I., Meng Z., Li H., Zhang X., Wu C., Tong K.-N., Shang Y., He Y., Zhu Y., Wei G., Meng H. Enhanced Horizontal Dipole Orientation by Novel Penta-Helicene Anthracene-Based Host for Efficient Blue Fluorescent OLEDs // Small. ‒ 2024. ‒ T. 20, ¹ 24. ‒ C. 2311114.

10. Electronic processes in organic semiconductors: An introduction. / Köhler A., Bässler H.: John Wiley & Sons, 2015.

11. Marcus R. A., Sutin N. Electron transfers in chemistry and biology // Biochimica et Biophysica Acta (BBA) – Reviews on Bioenergetics. ‒ 1985. ‒ T. 811, ¹ 3. ‒ C. 265-322.

12. Coropceanu V., Cornil J., da Silva Filho D. A., Olivier Y., Silbey R., Brédas J.-L. Charge Transport in Organic Semiconductors // Chemical Reviews. ‒ 2007. ‒ T. 107, ¹ 4. ‒ C. 926-952.

13. Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields // The Journal of Physical Chemistry. ‒ 1994. ‒ T. 98, ¹ 45. ‒ C. 11623-11627.

14. Schäfer A., Horn H., Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr // The Journal of Chemical Physics. ‒ 1992. ‒ T. 97, ¹ 4. ‒ C. 2571-2577.

15. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory // Journal of Computational Chemistry. ‒ 2011. ‒ T. 32, ¹ 7. ‒ C. 1456-1465.

16. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy // Physical Chemistry Chemical Physics. ‒ 2005. ‒ T. 7, ¹ 18. ‒ C. 3297-3305.

17. Neese F. Software update: The ORCA program system–Version 5.0 // WIREs Computational Molecular Science. ‒ 2022. ‒ T. 12, ¹ 5. ‒ C. e1606.

18. Jorgensen W. L., Maxwell D. S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids // Journal of the American Chemical Society. ‒ 1996. ‒ T. 118, ¹ 45.

19. Jorgensen W. L., Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin // Journal of the American Chemical Society. ‒ 1988. ‒ T. 110, ¹ 6.

20. Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers // SoftwareX. ‒ 2015. ‒ T. 1-2. ‒ C. 19-25.

21. Kirkpatrick J. An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian // International Journal of Quantum Chemistry. ‒ 2008. ‒ T. 108, ¹ 1. ‒ C. 51-56.

22. Kobayashi H., Kobayashi N., Hosoi S., Koshitani N., Murakami D., Shirasawa R., Kudo Y., Hobara D., Tokita Y., Itabashi M. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations // The Journal of Chemical Physics. ‒ 2013. ‒ T. 139, ¹ 1.

23. Landi A., Troisi A. Rapid Evaluation of Dynamic Electronic Disorder in Molecular Semiconductors // The Journal of Physical Chemistry C. ‒ 2018. ‒ T. 122, ¹ 32. ‒ C. 18336-18345.

24. Wu M.-F., Yeh S.-J., Chen C.-T., Murayama H., Tsuboi T., Li W.-S., Chao I., Liu S.-W., Wang J.-K. The Quest for High-Performance Host Materials for Electrophosphorescent Blue Dopants // Advanced Functional Materials. ‒ 2007. ‒ T. 17, ¹ 12. ‒ C. 1887-1895.

25. Kim J.-M., Lee C.-H., Kim J.-J. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes // Applied Physics Letters. ‒ 2017. ‒ T. 111, ¹ 20.

For citation:

Sosorev A.Yu., Dubinets N.O., Stakharny S.A., Nuriev A.V., Morozov A.A. Evaluation of charge mobility in the hosts of emitting layers of anthracene-based organic light-emitting diodes using multiscale modeling. // Journal of Radio Electronics. – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.19 (In Russian)