Journal of Radio Electronics. eISSN 1684-1719. 2024. №12
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.12.2
METHODOLOGY FOR ASSESSING THE EFFECT
OF IONOSPHERIC DIFFUSIVITY AND THE CHOICE
OF OPERATING FREQUENCY ON THE NOISE IMMUNITY
V.P. Pashintsev 1, D.A. Belokon 1, V.A. Tsimbal 2, S.A. Kоvаl 3, D.A. Skorik 1
1 North Caucasus Federal University, 355017, Stavropol, Pushkin str., 1
2 Military Academy of Strategic Missile Forces (branch in Serpukhov, Moscow region), 142210, Serpukhov, Brigadnaya str., 17
3 Krasnodar Higher Military School named after Army General S. M. Shtemenko
350063, Krasnodar, Krasin str., 4.
The paper was received November 22, 2024.
Abstract. It is known that the noise immunity of shortwave communication channels with one discrete beam (mode) depends on the fading depth of the received signals. The latter, in turn, depends on the ionosphere diffuseness and the choice of the operating frequency of the wave. In a single-mode shortwave communication channel, signal fading is usually described by the Rician distribution. A technique is known for estimating the Rician fading parameter in a single-mode shortwave channel from the choice of the operating frequency. However, it is advisable to develop it in the direction of determining the dependence of the Rician parameter on the ratio of the operating frequency to the maximum usable frequency and the level of ionospheric diffuseness. The objective of the paper is to develop a technique for estimating the probability of erroneous reception of signals with binary orthogonal frequency modulation in a single-mode shortwave communication channel depending on the level of ionospheric diffuseness and the choice of the ratio of the operating frequency of the wave to the maximum usable frequency. This technique is developed in 2 stages: 1) determining the dependence of the Rician parameter on the ratio of the operating frequency to the maximum usable frequency and the level of ionospheric diffuseness; 2) determining the dependence of the probability of erroneous signal reception on the ratio of the operating frequency to the maximum usable frequency and the ionospheric diffuseness level. It was found that with a strong ionospheric diffuseness, fading in a single-mode shortwave communication channel in the range of operating frequency to maximum usable frequency ratios from 1 to 0.4 will be close to the Rayleigh fading, and with a normal diffuseness level, the Rice parameter value can vary within a wide range: from 0.2 to 100. Analytical expressions were obtained for determining the dependence of the probability of erroneous signal reception with binary orthogonal frequency modulation on the ratio of the operating frequency to the maximum usable frequency and the ionospheric diffuseness level. The effect of an increase in the ionospheric diffuseness during its disturbances on the value of the signal-to-noise ratio at the receiver input permissible for ensuring the required error probability was analyzed for different operating frequency to maximum usable frequency ratios. On this basis, recommendations have been developed for selecting the ratio of the operating frequency to the maximum usable frequency, which ensure a reduction in the permissible signal-to-noise ratio at the receiver input at different levels of ionospheric diffuseness.
Keywords: single-beam shortwave communication channel, binary orthogonal frequency modulation, ionosphere, diffuseness, fading, Rice parameter, noise immunity.
Funding: The research was carried out at the expense of a grant from the Russian Science Foundation No. 24-21-00295 (https://rscf.ru/project/24-21-00295 /).
The author for correspondence: Belokon Dmitry Alexandrovich, ahoi8@yandex.ru
References
1. Berezovskiy V. A., Dul'keyt I. V., Savitskiy O. K. Sovremennaya dekametrovaya radiosvyaz': oborudovaniye, sistemy i kompleksy [Modern decameter radio communication: equipment, systems and complexes], pod red. V. A. Berezovskogo. Moscow, Radiotekhnika, 2011, 444 p. (In Russian).
2. Chernov Yu. A. Spetsial'nyye voprosy rasprostraneniya radiovoln v setyakh svyazi i radioveshchaniya [Special issues of radio wave propagation in communication and broadcasting networks]. Moscow, TECHNOSPHERE, 2018, 688 p. (In Russian).
3. Kalinin A. I., Cherenkova L. E. Rasprostranenie radiovoln i rabota radiolinij. [Distribution of radio waves and work of radio lines]. Moscow, Svyaz Publ., 1971. 439 p. (in Russian).
4. Cherenkova E. L., Chernyshov O. V. Rasprostranenie radiovoln. [Distribution of radio waves]. Moscow, Radio i svyaz Publ., 1984. 272 p. (in Russian).
5. Khmel'nitskiy Ye. A. Otsenka real'noy pomekhoustoychivosti priyema signalov v KV diapazone [Assessment of real noise immunity of signal reception in the HF range]. Moscow, Svyaz', 1975, 232 p. (In Russian).
6. Fabritsio D. A. Vysokochastotnyy zagorizontnyy radar: osnovopolagayushchiye printsipy, obrabotka signalov i prakticheskoye primeneniye [High-frequency over-the-horizon radar: fundamental principles, signal processing and practical application]. Moscow, TEKHNOSFERA, 2018, 936 p. (In Russian).
7. Kirilov N. E. Pomekhoustoichivaya peredacha soobshchenii po lineinym kanalam so sluchaino izmenyayushchimisya parametrami. [Noise-Resistant Transmission of Messages via Linear Channels with Randomly Changing Parameters]. Moscow, Sovetskoye radio, 1971, 256 p. (In Russian).
8. Fink L. M. Teoriya peredachi diskretnykh soobshcheniy. [Theory of discrete message transmission]. Moscow, Sov. radio, 1970, 728 p. (In Russian).
9. Zhukov G. A., Budko P. A. Wideband and narrowband signals in radio links of the decameter wavelength range. Morskaya radioelektronika, 2020, no. 2, pp. 32–37 (In Russian).
10. Zhukov G. A., Budko P. A., Dyachenko A. N. Modification of the Waterson model of the ionospheric shortwave radio channel for adaptive spatial diversity reception. Sistemy upravleniya, svyazi i bezopasnosti, 2023, no. 2, pp. 147–174 (In Russian). doi:10.24412/2410-9916-2023-2-147-174
11. Oroshchuk I. M., Suchkov A. N., Kadochnikov M. I. Formation of single-beam decameter communication channels using digital antenna arrays placed on natural slopes. Zhurnal radioelektroniki, 2023, no. 9. (In Russian). doi:https://doi.org/10.30898/1684-1719.2023.9.12
12. Oroshchuk I. M., Gureyev I. Ye, Suchkov A. N., Solov'yev M.V. Results of a study of spatial-correlation characteristics of a single-beam ionospheric decameter communication channel. Morskiye intellektual'nyye tekhnologii, 2020, no. 1, vol. 2, pp. 145–150 (In Russian).
13. Voennye sistemy radiosvyazi. Chast 1 / Pod red. V.V. Ignatova. – L.: VAS, 1989. – 386 p. (In Russian).
14. Klovsky D. D. Peredacha diskretnykh soobshchenii po radiokanalam [Transmission of Discrete Messages over Radio Channels]. Moscow, Svyaz, 1969, 376 p. (In Russian).
15. Barnes R. I. Spread - Es structure producing apparent small scale structure in the F - region. Journal pf Atmospheric and Terrestrial Physics, vol. 54 (3-4), 1992, 373–389 p.
16. Sklar B. Digital communications: fundamentals and applications. Pearson, 2021, 1104 p.
17. Simon K., Alouini M. S. Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, New York, John Wiley&Sons, 2000, 544 p.
18. Krasovsky V.N., Pervyshin Yu.I., Slyusarev P.V., Phillipov V.V., Chomsky E.V., Elektromagnitnaya dostupnost' radioizluchenij i antennye ustrojstva [Electromagnetic accessibility of radio emissions and antenna devices], Leningrad, Military academy of communication Publ., 1984, 204 p. (in Russian).
19. Slyusarev P. V. Elektromagnitnaja dostupnost radioizluchenij i antennye ustrojstva [Electromagnetic accessibility of radio emissions and antenna devices]. Leningrad, Military academy of communication Publ., 1978, 108 p. (in Russian).
20. Rukovodstvo po organizatsii ionosferno-volnovoy i chastotno-dispetcherskoy sluzhby na uzlakh svyazi Vooruzhennykh sil SSSR [Guidelines for the organization of the ionospheric-wave and frequency-dispatch services at communication centers of the Armed Forces of the USSR]. Moscow, Voennoe izdatel’stvo Publ., 1990. 96 p. (in Russian).
21. Yakovlev O. I., Yakubov V. P., Uryadov V. P., Pavel'yev A. G. Rasprostraneniye radiovoln [Radio wave propagation]. Moscow, LENAND, 2009, 496 p. (In Russian).
22. Yeh K.H., Liu C-H. Radio Wave Scintillations in the Ionosphere. Proceedings of the IEEE, vol. 70, no. 4, 1982, pp. 324-360. doi:10.1109/proc.1982.12313
23. Pashintsev V. P., Omelchuk A. V., Koval S. A., Galushko Yu.I. Method for determining the intensity of irregularities from ionospheric sounding data. Double technologies, 2009, no. 1, pp. 38–41 (In Russian).
24. Sposob opredeleniya velichiny intensivnosti neodnorodnostej ionosfery po dannym vertikal'nogo zondirovaniya//Patent RF na izobretenie №2403592 ot 10.11.2010. Byul. № 31. Galushko Yu.I., Koval' S.A., Senokosov A.V., Gribanov E.V.
25. Pashincev V.P., Koval' S.A., Strekozov V.I., Bessmertnyj M.Yu. Obnaruzhenie iskusstvennyh ionosfernyh obrazovanij s pomoshch'yu sputnikovyh radionavigacionnyh sistem. Teoriya i tekhnika radiosvyazi. 2013. №1. P.112-117.
26. Ustrojstvo dvuhchastotnogo izmereniya intensivnosti neodnorodnostej ionosfery//Patent RF na poleznuyu model' №108150 ot 10.09.2011. Byul. №25. Gribanov E.V., Cimbal V.A., Shimanov S.N., Porsev A.V., Potyagov D.A., Senokosova A.V., Bibarsov M.R., Belov A.D., Koval' S.A., Korotkov S.Yu.
27. Pashintsev V. P., Tishkin S. A., Ivannikov A. I., Borovlev I. I. Calculation of the fading depth parameter in a single-beam decameter radio link. News of higher educational institutions. Radioelectronics, 2001, volume 44, no. 12, pp. 57–65 (In Russian).
28. Pashintsev V. P., Belokon D. A., Koval S. A., Skorik A. D., Methodology for assessing the reliability of communication in a shortwave radio link with Rice fading taking into account the diffuseness of the ionosphere. News of higher educational institutions. Radioelectronics, 2022, vol. 25, no. 6, pp. 22–39 (In Russian). doi:https://doi.org/10.32603/1993-8985-2022-25-6-22-39
29. Pashintsev V. P., Skorik A. D., Koval’ S. A., Kiselev D. P., Senokosov M. A. Decameter radio line communication reliability dependence of the operating frequency choice taking into account the signal-noise situation and ionosphere diffuseness. Systems of Control, Communication and Security, 2019, no. 4, pp. 300-322. doi: 10.24411/2410-9916-2019-10412 (in Russian).
30. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions. Space weather. 2017. Vol. 15, P. 418–429. https://doi.org/10.1002/2016SW00159
For citation:
Pashintsev V.P., Belokon D.A., Tsimbal V.A., Koval S.A., Skorik A.D. Methodology for assessing the effect of ionospheric diffusivity and the choice of operating frequency on the noise immunity of shortwave communications // Journal of Radio Electronics. – 2024. – №. 12. https://doi.org/10.30898/1684-1719.2024.12.2.