Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.12.5
OF DIPOLE ANTENNA radiation pattern
AT interface between two media
I.V. Prokopovich
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, RAS
108840, Russia, Moscow, Kaluzhskoye Hwy, 4.
The paper was received May 21, 2024.
Abstract. The work examines the problem of numerical modeling of pulsed radiation from a dipole antenna lying at the interface between air and a dielectric medium. A brief description of the time domain finite difference modeling capabilities implemented in the gprMax software package is provided. In order to control the obtained numerical results, they are compared with known analytical solutions of two-dimensional radiation problems of an infinitely long line with a current, lying at the interface between two media; the radiation pattern is considered in both frequency and time domains. It is shown that the analytical and numerical solutions, when calculating the radiation pattern of pulsed radiation, give equivalent results. Disadvantages are noted of the numerical approach which copes well with calculations in the near field, while signal estimates in the far field can require excessive computational, including time, resources even for a relatively simple two-dimensional problem. The three-dimensional directivity patterns of pulsed radiation of a finite dipole antenna in the near field are also numerically calculated. The results obtained can be used in georadar practice in order to select a GPR survey scheme. The last section of the work is devoted to the examples of calculating signal attenuation with the radar range equation, taking into account numerically calculated radiation patterns.
Key words: GPR, gprMax, dipole antenna, radiation pattern, radar range equation, sounding depth.
Corresponding author: Prokopovich Igor Valer’evich, prokop@izmiran.ru
References
1. Warren C., Giannopoulos A. Characterisation of a ground penetrating radar antenna in lossless homogeneous and lossy heterogeneous environments // Signal Processing. – 2017. – V. 132. – P. 221-226. https://doi.org/10.1016/j.sigpro.2016.04.010
2. Berkut A.I., Edemsky D.E., Kopeikin V.V., Morozov P.A., Prokopovich, I.V., Popov A.V. Deep penetration subsurface radar: hardware, results, interpretation // 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). – IEEE, 2017. – P. 1-6. https://doi.org/10.1109/IWAGPR.2017.7996052
3. Sakhterov V.I., Averin A.A., Popov A.V., Prokopovich I.V. K raschetu antenn impul'snogo georadara // Vserossiiskie otkrytye Armandovskie chteniya: Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln. – 2022. – No. 1. – P. 485-488. https://doi.org/10.24412/2304-0297-2022-1-485-488 (in Russian).
4. Morozov P., Morozov F., Lazarev M., Bogolyubov L., Popov A. Characterization of antenna radiation pattern and penetration depth in ground penetrating radar field missions // Remote Sensing. – 2023. – V. 15. – No. 23. – P. 5452. https://doi.org/10.3390/rs15235452
5. Engheta N., Papas C. H., Elachi C. Interface extinction and subsurface peaking of the radiation pattern of a line source // Applied Physics B. – 1981. – V. 26. – P. 231-238. https://doi.org/10.1007/BF00692543
6. Edemsky F., Popov A., Zapunidi S. A time domain model of GPR antenna radiation pattern // International Journal of Electronics and Telecommunications. – 2011. – V. 57. – No. 3. – P. 407-411. http://dx.doi.org/10.2478/v10177-011-0056-1
7. Giannopoulos A. Modelling ground penetrating radar by GprMax // Construction and building materials. – 2005. – V. 19. – No. 10. – P. 755-762. https://doi.org/10.1016/j.conbuildmat.2005.06.007
8. Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media // IEEE Transactions on antennas and propagation. – 1966. – V. 14. – No. 3. – P. 302-307. https://doi.org/10.1109/TAP.1966.1138693
9. Radzevicius S.J., Chen C.C., Peters Jr L., Daniels J.J. Near-field dipole radiation dynamics through FDTD modeling // Journal of applied geophysics. – 2003. – V. 52. – No. 2-3. – P. 75-91. https://doi.org/10.1016/S0926-9851(02)00241-0
10. Scheers B. Ultra-wideband ground penetrating radar with application to the detection of anti personnel landmines // Royal Military Academy, Brussels. – 2001.
11. Armand N.A., Lukin D.S., Chubinskii N.P. Sovremennye problemy podpoverkhnostnoi radiolokatsii // Sverkhshirokopolosnye sistemy v radiolokatsii i svyazi: Konspekty lektsii. – Murom: Izd.-pol. tsentr MI VLGU. – 2003. – P. 92-107. (in Russian).
12. Izyumov S.V., Druchinin S.V., Voznesenskii A.S. Teoriya i metody georadiolokatsii: Ucheb. posobie // M.: Izdatel'stvo ‘Gornaya kniga’. – 2008. – 196 pp. (in Russian).
13. Dudnik A.V. Vliyanie izluchaemoi moshchnosti na glubinu zondirovaniya v georadiolokatsii // Razvedka i okhrana nedr. – 2008. – No. 1. – P. 38-40. (in Russian).
14. Berkut A.I., Kopeikin V.V., Morozov P.A., Krinitskii L.M., Ul'yantsev N.A., Popov A.V., Prokopovich I.V. Glubinnyi georadar. Issledovaniya geologicheskoi struktury podstilayushchei poverkhnosti. https://www.geo-radar.ru/publish/pub8.php (in Russian).
15. Finkel'shtein M.I., Karpukhin V.I., Kutaev V.A., Metelkin V.N. Podpoverkhnostnaya radiolokatsiya // M.: Radio i svyaz'. – 1994. – 216 pp. (in Russian).
16. Prokopovich I., Popov A., Pajewski L., Marciniak M. Application of coupled-wave Wentzel-Kramers-Brillouin approximation to ground penetrating radar // Remote Sensing. – 2018. – V 10. – No. 1. – P. 22. https://doi.org/10.3390/rs10010022
For citation:
Prokopovich I.V. Numerical calculation of dipole antenna radiation pattern at interface between two media // Journal of Radio Electronics. – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.5 (In Russian)