DOI: https://doi.org/10.30898/1684-1719.2024.12.6

УДК: 537.872.32

ВЛИЯНИЕ СИЛЬНОГО ЛОКАЛЬНОГО ВОЗМУЩЕНИЯ АТМОСФЕРЫ НА ВЕЛИЧИНУ НАПРЯЖЕННОСТИ БЛИЖНЕГО ПОЛЯ НИЗКОЧАСТОТНОЙ РАМОЧНОЙ АНТЕННЫ, РАСПОЛОЖЕННОЙ В ИОНОСФЕРЕ ЗЕМЛИ

А.В. Мошков

ИРЭ им. В.А. Котельникова РАН 125009, Москва, ул. Моховая, 11, корп.7

Статья поступила в редакцию 19 августа 2024 г.

Аннотация. Проведены численные расчеты зависимости от времени величины ближнего электрического напряженности поля рамочной антенны, расположенной в ионосфере, в интервале частот 1...10 кГц. Параметры ионосферной плазмы (величина ионизации, температура, эффективная частота соударений электронов) изменяются во времени под влиянием всплывающего в атмосфере сильного локального возмущения, вызванного вторжением метеоритных тел. Показано, что по мере приближения области возмущения к антенне величина напряженности поля существенно отклоняется от фоновых значений сначала в сторону увеличения, а затем в сторону уменьшения вплоть до величины порядка напряженности поля такой антенны в свободном пространстве. Длительность этих возмущений напряженности поля находится в интервале от 15 до 30 с при изменении начальной энергии возмущения атмосферы от 1 до 10 ПДж.

Ключевые слова: ионосфера, рамочная антенна, низкие частоты, сильное локальное возмущение.

Финансирование: работа выполнена в рамках государственного задания Института радиотехники и электроники им. В.А. Котельникова РАН (тема № FFWZ-2022-0014).

Автор для переписки: Мошков Александр Владимирович, kuzaf@inbox.ru)

Введение

Одним из способов дистанционной диагностики параметров сильного локального возмущения атмосферы является измерение напряженности поля низкочастотного передатчика, расположенного в ионосфере. В качестве источника таких возмущений могут выступать высыпания энергичных частиц радиационных поясов [1], излучение мощных наземных передатчиков, вторжение крупных метеоров или комет [2].

Из крупных метеоритных тел, зафиксированных на территории РФ за последние примерно 100 лет, отметим Тунгусский метеорит с энергией ~ 200 ПДж (1 петаджоуль равен 10¹⁵ Дж) и Сихотэ-Алинский метеорит (~ 0.1 ПДж) [2]. Считаем подобного рода возмущения атмосферы сильными и локальными, если они приводят к увеличению ионизации (концентрации свободных электронов) окружающей среды на несколько порядков величины в области пространства, характерные размеры которой сравнимы с длиной НЧ-волны, т.е. составляют десятки или сотни километров.

Входной импеданс рамочной антенны имеет индуктивный характер и практически не зависит от параметров ионосферной плазмы, что подтверждается теоретически [3] и экспериментально [4, 5]. Этот факт позволяет использовать такую антенну в качестве источника электромагнитных НЧ колебаний при проведении активных экспериментов в ионосфере и магнитосфере Земли.

Характерной особенностью ионосферы с точки зрения генерации НЧ-волн низкой частоты является ее одноосная анизотропия, обусловленная присутствием постоянного геомагнитного поля. Направление и величина этого поля зависят от географического положения и высоты над поверхностью земли. Показатель преломления таких волн может достигать десятков и сотен единиц.

Соответственно, значительно сокращается длина волны и резко возрастает эффективность излучения рамочной антенны. Кроме того, пространственное и частотное распределение напряженности поля такого источника имеют ярко выраженный резонансный характер вследствие анизотропии среды [3, 6, 7].

Цель данной работы состоит в численной оценке напряженности ближнего поля рамочной антенны конечных размеров в присутствии всплывающего в атмосфере сильного локального возмущения, вызванного возможным вторжением метеоритных тел. По мере движения в атмосфере возмущение модифицирует параметры ионосферной плазмы, в результате чего величина напряженности поля рамочной антенны начинает зависеть от времени.

В качестве модели возмущения используем простейшую регулярную (без учета тепловых эффектов и турбулентности) модель, описывающую в газодинамическом приближении поведение облака сильно ионизованной плазмы, образовавшегося после быстрого (секунда и менее) точечного выделения большого количества энергии в интервале значений 0.1...10 ПДж [8]. Эта модель зависит всего от двух начальных параметров возмущения – энергии Q и высоты h_0 над поверхностью земли. Она позволяет вычислить изменение ближнего поля рамки с течением времени, а также оценить влияние на этот процесс параметров Q и h_0 .

Расчеты проводим в интервале частот 1...10 кГц (длины волн 30...300 км). Радиус рамки a = 10 м, амплитуда синусоидального тока в ней $I_0 = 100$ А в соответствие с экспериментальной работой [5]. Антенна расположена в ионосфере на геомагнитной широте 70° и высоте 200 км над поверхностью земли.

1. Основные соотношения

Считаем, что в окрестности излучателя среда однородна и безгранична. Тензор диэлектрической проницаемости холодной многокомпонентной однородной магнитоактивной ионосферной плазмы имеет вид [9]

$$\hat{\varepsilon} = \begin{bmatrix} S & -iD & 0\\ iD & S & 0\\ 0 & 0 & P \end{bmatrix},$$
(1)

где $R = 1 + \sum X_k/(Y_k - U_k)$; $L = 1 - \sum X_k/(Y_k + U_k)$; $P = 1 - \sum X_k/U_k$; S = (R + L) / 2; D = (R - L) / 2; $U_k = 1 - iv_k/\omega$, $v_k - эффективная$ частота соударений частиц сорта k; f – частота волны, $\omega = 2\pi f$, i – мнимая единица. Суммирование ведется по сорту k заряженных частиц, составляющих плазму, с учетом знака заряда в величинах Y_k :

$$Y_k \equiv f_{Hk} / f; X_k \equiv (f_{pk} / f)^2,$$
(2)

где f_{Hk} и f_{pk} – гиро- и плазменная частота частицы сорта k = 1, 2, ..., причем, значение k = 1 соответствует электронам. Плазменная частота электронов имеет вид

$$f_{pe} = (e^2 N_e / 4\pi^2 \varepsilon_0 m_e)^{1/2} \approx 8.97 N_e^{1/2}, \, \kappa \Gamma \mathfrak{u}, \tag{3}$$

где концентрация свободных электронов N_e измеряется в см⁻³; e, m_e – заряд и масса электрона; ε_0 – диэлектрическая проницаемость вакуума. Для ионов сорта k в формуле (3) следует использовать соответствующие значения концентрации, заряда и массы иона.

В случае дипольной модели геомагнитного поля для гирочастоты электронов на высоте *h* и геомагнитной широте Ф имеем выражение

$$f_{He} = eB_0/2\pi m_e \approx 876.0 \ (1+h/R_0)^{-3} \ (1+3\sin^2\Phi)^{1/2}, \ \kappa\Gamma\mu, \tag{4}$$

где $R_0 \approx 6370$ км – средний радиус Земли.

Пусть на высоте h_0 в момент времени t = 0 образуется сильное локальное возмущение атмосферы с начальной энергией Q. В результате возникает сильно разогретая область повышенной ионизации, которая начинает подниматься вверх под действием архимедовой силы, постепенно увеличиваясь в размерах,

в основном в горизонтальном направлении. Например, при $h_0 = 5$ км, Q = 10 ПДж средняя скорость подъема центра возмущения от момента t = 0 до момента достижения высоты расположения рамки h = 200 км ($t \approx 202$ с) составит ~ 0.97 км/с. В центре возмущения в этот момент: $N_e = 7.94 \times 10^9$ см⁻³, $v_e = 6.66 \times 10^7$ с⁻¹; горизонтальный размер возмущения ~ 200 км; толщина ~ 10 км.

Параметры возмущенной области не зависят от времени суток, сезона, географического положения и солнечной активности, поэтому для невозмущенной ионосферы достаточно выбрать одну модель значений ее параметров на широте 70°. Для проведения расчетов выберем дневные условия, равноденствие и среднюю активность солнца. Из данных [10] и формул (3), (4) получим для высоты 200 км: $N_e = 3.55 \times 10^5$ см⁻³, $v_e = 58.4$ с⁻¹, $f_{pe} = 5.35$ МГц, $f_{He} = 1.53$ МГц. Пять положительных ионов N, O, N₂, NO, O₂ имеют доли 0.003, 0.508, 0.017, 0.315 и 0.15 соответственно.

2. Результаты расчетов

Пусть ось рамочной антенны параллельна $\overrightarrow{B_0}$ и начало координат расположено в ее центре. Выберем точку наблюдения на расстоянии r = 1000 м; направление на точку наблюдения имеет угол θ относительно оси рамки.

Для проведения вычислений используем алгоритм, изложенный в работе [7]. Там же приведены результаты расчетов напряженности ближнего электрического поля рамочной антенны в невозмущенной ионосфере. Ближнее магнитное поле совпадает с полем в пустом пространстве. Из результатов работы [7] следует, что зависимость $E(\theta)$ амплитуды напряженности ближнего поля имеет резонансный максимум вблизи значений $\theta = 0.2...0.5^{\circ}$. Все приведенные ниже результаты рассчитаны для значения $\theta = 0.2^{\circ}$.

На рис. 1 приведена зависимость от времени амплитуды напряженности ближнего электрического поля рамочной антенны на частоте 5 кГц.

Рис. 1. Зависимость амплитуды напряженности поля от времени; $f = 5 \text{ к}\Gamma \text{ц}, Q = 10 \text{ ПДж}, h_0 = 10 \text{ км.}$

На рисунке отчетливо видны два относительно узких максимума, соответствующих моментам входа возмущения в плазменный слой (t = 174 с, $h_c = 184$ км) и выхода из него (t = 202 с, $h_c = 214$ км), где h_c – высота центра возмущения. Между этими моментами величина напряженности поля резко уменьшается более, чем на три порядка, по отношению к невозмущенному значению.

Известно [3], что величина напряженности поля рамочной антенны возрастает пропорционально величине N_e при прочих равных условиях. В то же время, с приходом возмущения начинает расти и величина v_e . Рассмотрим плазму, состоящую из одних электронов. Тогда из определений (1) следует, что с ростом величин N_e и v_e имеем

$$S \sim 1 + N_e/v_e, \ D \sim N_e/v_e^2,$$
 (5)

и при значительном росте величины v_e получим $S \rightarrow 1$ и $D \rightarrow 0$, что соответствует свободному пространству. В вакууме максимальная напряженность поля рамочной антенны для используемых параметров задачи составит ~ 10^{-4} B/м, что по порядку величины соответствует минимальным значениям на рис. 1.

Как указано выше, в невозмущенной среде вокруг антенны имеем $N_{\rm e} = 3.55 \times 10^5 \text{ см}^{-3}$, $v_{\rm e} = 58.4 \text{ c}^{-1}$, т.е. фоновые значения $v_{\rm e}$ относительно невелики

и $N_e/v_e \approx 6.1 \times 10^3$. С приходом возмущения величина N_e возрастает, что приводит к резкому росту амплитуды напряженности поля. Однако величина v_e растет быстрее N_e , поскольку $v_e \sim N_e T_e^{1/2}$, где T_e – температура электронов в возмущении [12]. В момент времени t = 174 с имеем $N_e \approx 3.1 \times 10^6$ см⁻³, $v_e \approx 1.7 \times 10^4$ с и $N_e/v_e \approx 1.8 \times 10^2$. В результате после кратковременного увеличения напряженности поля происходит резкий спад до значений, сравнимых с величиной напряженности поля в свободном пространстве.

На рис. 2 приведены зависимости величины напряженности поля от времени для частоты 1 кГц для значений Q 10 ПДж (кривая 1) и 1 ПДж (кривая 2). Из рисунка видно, что величина напряженности поля слабо зависит от Q, что характерно для возмущений такого рода [12]. В то же время для Q = 1 ПДж средняя скорость подъема возмущения составит 0.83 км/с при характерном вертикальном размере 3.4 км на высоте расположения рамочной антенны. Для Q = 10 ПДж эти величины соответственно равны 0.98 км/с и 8.4 км. Их различие объясняет сдвиг кривых по времени и увеличение ширины возмущенной части кривой E(t) с ростом Q.

На рис. 3 приведена зависимость среднего максимального значения напряженности ближнего поля антенны от величины начальной высоты

формирования возмущения h_0 при $h_c = 200$ км. Максимумы напряженности поля (рис. 1) имеют чрезвычайно малую ширину в сравнении с обычным шагом расчета по времени 1 с, поэтому максимумы на рис. 1 и 2 рассчитывались с шагом 0.1 с, что, тем не менее, не гарантирует их точную величину. Поэтому вычислялось среднее двух максимумов напряженности поля.

Для качественного объяснения поведения кривой $E(h_0)$ на рис. 3 приведены соответствующие зависимости величин N_e и v_e в центре возмущения, который совпадает с местом расположения рамочной антенны. Из рисунка видно, что величина N_e слабо зависит от начальной высоты при $h_0 < 47$ км, что связано с конкуренцией двух процессов. С одной стороны, с увеличением h_0 плотность невозмущенной атмосферы экспоненциально уменьшается, что приводит к уменьшению исходного числа ионизируемых молекул в области возмущения. С другой стороны, с ростом h_0 уменьшается расстояние до ионосферы, что приводит к увеличению N_e в окрестности излучателя. Поскольку величина v_e зависит не только от N_e , но и от температуры электронов (смотри выше), то с ростом h_0 значение v_e убывает.

Рис. 3. Зависимость величин $N_e(1)$, $v_e(2)$ и средней максимальной амплитуды напряженности поля E(3) от начальной высоты формирования возмущения в момент времени, когда рамочная антенна находится в его центре; f = 5 кГц, Q = 10 ПДж.

Из рис. 3 видно, что величина максимальной напряженности поля при $h_0 < 47$ км меняется в соответствии с изменением значения отношения $N_{\rm e}/v_{\rm e}$. При $h_0 > 47$ км изменяется форма возмущения [8, 12]. Если при $h_0 = 47$ км горизонтальный и вертикальный размер возмущенной области на высоте излучателя составляют 622 км и 44 км соответственно, то при $h_0 = 48$ км возмущение имеет сферическую форму с радиусом 10 км. При таком резком уменьшении объема возрастают величины N_e , v_e и T_e , а величина N_e/v_e уменьшается, что приводит к заметному спаду средней максимальной напряженности поля рамочной антенны.

Заключение

Из анализа полученных результатов можно сделать следующие выводы.

- Возмущение ионосферной плазмы существенно влияет на величину напряженности низкочастотного ближнего поля рамочной антенны. По мере всплытия возмущения в ионосфере эта величина изменяется на 2...3 порядка как в сторону увеличения, так и в сторону уменьшения относительно невозмущенного случая.
- Длительность возмущения напряженности поля находится в интервале от 15 до 30 с при изменении начальной энергии от 1 до 10 ПДж.
- 3) По мере всплытия возмущения в ионосфере эффективная частота соударений электронов в окрестности рамочной антенны возрастает существенно быстрее концентрации электронов. Это делает ионосферную плазму практически изотропной, что приводит к резкому уменьшению напряженности поля до значений, сравнимых с величиной напряженности поля рамочной антенны в пустом пространстве.

Финансирование: работа выполнена в рамках государственного задания Института радиотехники и электроники им. В.А. Котельникова РАН (тема № FFWZ-2022-0014).

Литература

- Helliwell R.A., Katsufrakis J.P., Trimpi M. Whistler-induced amplitude perturbation in VLF propagation // J. Geophysical Research. – 1973. – Vol. 78. – No. 22. – P. 4679-4688. – https://doi.org/10.1029/JA078I022P04679
- 2. Бронштэн В.А. Физика метеорных явлений. Москва: Наука, 1981. 416 с.
- Акиндинов В.В., Еремин С.М., Лишин И.В. Антенны низкой частоты в магнитоактивной плазме (обзор) // Радиотехника и электроника. – 1985.
 – Т. 30. – № 5. – С. 833-850.
- 4. Koons H.C., Dazey M.N., Edgar B.C. Impedance Measurements on a VLF Multiturn Loop Antenna in a Space Plasma Simulation Chamber // Radio Sci. – 1984.
 – Vol. 19. – No. 1. – P. 395-399. – https://doi.org/10.1029/RS019i001p00395
- 5. Арманд Н.А., Семенов Ю.П., Черток Б.Е. и др. Экспериментальное исследование в ионосфере Земли излучения рамочной антенны в диапазоне очень низких частот, установленной на орбитальном комплексе «Мир-Прогресс-28-Союз ТМ-2» // Радиотехника и электроника. 1988. Т. 33. № 11. С. 2225-2233.
- Лукин Д.С., Пресняков В.Б., Савченко П.П. Расчеты волновых полей ближней зоны рамочного ОНЧ-излучателя в однородной магнитоактивной плазме // Геомагнетизм и аэрономия. – 1988. – Т. 28. – № 2. – С. 262-267.
- 7. Мошков А.В., Пожидаев В.Н. Численное моделирование распределения низкочастотного поля, создаваемого передающей рамочной антенной, установленной на борту космического аппарата // Радиотехника T. 64. No 9. C. 2019. 866-873. И электроника. - https://doi.org/10.1134/S0033849419080126
- Мошков А.В., Пожидаев В.Н. Пространственное распределение демодулированного низкочастотного поля в ионосфере, возмущенной мощным коротковолновым радиоизлучением // Радиотехника и электроника. 2013. Т. 58. № 9. С. 965-970. https://doi.org/10.7868/S0033849413090106
- 9. Стикс Т. Теория плазменных волн. Москва: Атомиздат, 1965. 343 с.

- 10. Фаткуллин М.Н., Зеленова Т.И., Козлов В.К. и др. Эмпирические модели среднеширотной ионосферы. Москва: Наука, 1981. 256 с.
- Гинзбург В.Л. Распространение электромагнитных волн в плазме. Москва: Наука, 1967. – 684 с.
- Мошков А.В. Оценка длительности замираний радиоволн низкой частоты в волноводе «Земля-ионосфера» под влиянием сильного локального возмущения в атмосфере // Радиотехника и электроника. 2022. Т. 67. № 11. С. 1127-1132. https://doi.org/10.31857/S0033849422110109

Для цитирования:

Мошков А.В. Влияние сильного локального возмущения атмосферы на величину напряженности ближнего поля низкочастотной рамочной антенны, расположенной в ионосфере земли // Журнал радиоэлектроники. – 2024. – №. 12. https://doi.org/10.30898/1684-1719.2024.12.6