Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹12
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.12.13
ABOUT THE SUPERLUMINAL GROUP VELOCITY
OF A VIDEO SIGNAL IN AN AMPLIFYING MEDIUM
N.S. Bukhman, S.N. Bukhman
Samara State Technical University
443100, Samara, Molodogvardeyskaya str., 244
The paper was received August 21, 2025.
Abstract. It is shown that holomorphic (infinitely differentiable) video signals of sufficient duration are, in principle, capable of propagating in an environment with population inversion (and gain dominance over absorption at least at low frequencies) without significant distortion and significant amplification at a superluminal group velocity. The practical implementation of this effect is limited not so much by the distortion or amplification of the video signal itself, as by the maximum size (and amplification of extraneous signals at the maximum gain frequency) of actually existing active media. At best, with reasonable amplification coefficients of real-world active media, one can hope for the amount of time ahead of the vacuum speed of light by the video signal on the order of its own duration.
Key words: video signal, group speed, superluminal group speed.
Corresponding author: Bukhman Nikolay Sergeevich, e-mail: nik3142@yandex.ru
References
1. Bukhman N.S. On the group velocity of a video signal in a dielectric. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.1 (In Russian)
2. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln. – 1979.
3. Vaĭnshteĭn L.A. Propagation of pulses // Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138
4. Proxorov A.M. Fizicheskaya e`nciklopediya. – Ripol Klassik, 1988. – T. 1.
5. Proxorov A.M. i dr. (red.). Fizicheskij e`nciklopedicheskij slovar`. – Sovetskaya e`nciklopediya, 1983.
6. Bukhman N.S. On the principle of causality and superluminal signal propagation velocities // Journal of Communications Technology and Electronics. – 2021. – Ò. 66. – Ñ. 227-241.
7. Wang L.J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation // Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520
8. Talukder M.A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium // Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546
9. Dogariu A., Kuzmich A., Wang L.J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity // Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806
10. Akulshin A.M., Cimmino A., Opat G.I. Negative group velocity of a light pulse in cesium vapour // Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567. https://doi.org/10.1070/QE2002v032n07ABEH002249
11. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity // The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0
12. Akulshin A.M. et al. Pulses of fast light, the signal velocity, and giant Kerr nonlinearity // LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.
13. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy. – 2005. – V. 99. – No 1. – P. 81. https://doi.org/10.1134/1.1999897
14. Zolotovskiĭ I.O., Sementsov D.I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters // Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204
15. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium // Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816
16. Akulshin A.M., McLean R.J. Fast light in atomic media // Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001.
17. Malykin G.B., Romanets E.A. Superluminal motion // Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145
18. Zolotovskii I.O., Minvaliev R.N., Sementsov D.I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters // Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245. https://doi.org/10.3367/UFNe.0183.201312e.1353
19. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect // Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801
20. Macke B., Ségard B. Optical precursors with self-induced transparency // Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.
21. Macke B., Ségard B. Optical precursors in transparent media // Physical Review A–Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.
22. Boyd and R.W., Gauthier D.J. Slow and fast light // Progress in Optics. – 2002. – V. 43. – P. 497.
23. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors // Physical Review A–Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837
24. Ravelo B. Investigation on microwave negative group delay circuit // Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106
25. Macke B., Ségard B. // Opt. Commun. 2008. V. 281. ¹ 1. P. 12-17. https://doi.org/10.1016/j.optcom.2007.09.007
26. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs // Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353
27. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics // Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050
28. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor // Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801
29. Du S. et al. Observation of optical precursors at the biphoton level // Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149
30. Macke B., Ségard B. Brillouin precursors in Debye media // Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814
31. Macke B., Ségard B. On-resonance material fast light // Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803
32. Macke B., Ségard B. Optical precursors with self-induced transparency // Physical Review A–Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.
33. Macke B., Ségard B. Optical precursors in transparent media // Physical Review A–Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.
34. Boyd and R.W., Gauthier D.J. Slow and fast light // Progress in Optics. – 2002. – V. 43. – P. 497.
35. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors // Physical Review A–Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837
36. Sommerfeld A. Über die Fortpflanzung des Lichtes in dispergierenden Medien // Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 177-202.
37. Brillouin L. Über die Fortpflanzung des Lichtes in dispergierenden Medien // Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 203-240.
38. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs // Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353
39. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics // Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050
40. Du S. et al. Observation of optical precursors at the biphoton level // Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149
41. Macke B., Ségard B. Brillouin precursors in Debye media // Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814
42. Bukhman N.S. On holomorphic and piecewise holomorphic signals. // Journal of Radio Electronics. – 2025 – ¹ 3. https://doi.org/10.30898/1684-1719.2025.3.2 (In Russian)
43. Bukhman N.S. On the Change in the Duration f a Narrow-Band Signal in a Dispersive Medium With Increasing Path Length (Within the Framework of the Method of Moments) // Radiophysics and Quantum Electronics. 2024. Ò. 67. ¹ 2. Ñ. 166-180. https://link.springer.com/article/10.1007/s11141-025-10363-w
44. Bukhman N.S., Kulikova A.V. On the influence of the dispersion of absorption on the time dependence of a holonomic narrow-band signal in a dispersive medium far from the point of radiation. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. ¹2. https://doi.org/10.30898/1684-1719.2023.2.5 (In Russian)
45. Bukhman N.S. On the relationship between the delay time of a narrowband signal |in a dispersing medium and its attenuation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.12 (In Russian)
46. Strel’nitskii V.S. Cosmic masers // Sov. Phys. Usp. – 1975. – Ò. 17. – Ñ. 507-527; https://doi.org/10.1070/PU1975v017n04ABEH004424
For citation:
Bukhman N.S. Bukhman S.N. About the superluminal group velocity of a video signal in an amplifying medium // Journal of Radio Electronics. – 2025. – ¹. 12. https://doi.org/10.30898/1684-1719.2025.12.13 (In Russian)