Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.12.2

 

 

 

Experimental observation of self-mode locking regimes
in a gyro-resonant backward-wave oscillator
with a feedback circuit

 

A.A. Bogdashov, M.N. Vilkov, I.G. Gachev, N.S. Ginzburg,
I.V. Zotova, R.M. Rozental, S.V. Samsonov

 

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of RAS
603950, Russia, Nizhny Novgorod, Ul'yanov str., 46

 

The paper was received November 18, 2025.

 

Abstract. A pulse-periodic oscillation regime was experimentally obtained in a gyro-resonant backward-wave oscillator (BWO) with a feedback circuit providing a high (approximately 0.9) transmission coefficient. The experiments were conducted by a 30 GHz gyro-BWO with a working space in the form of a three-pass corrugated waveguide. The pulse repetition frequency, with duration of ~1.5 ns, was approximately 220 MHz. The observed regime is interpreted as a mode-locking effect in a ring resonator formed by the interaction space of the gyro-BWO and the feedback circuit.

Key words: backward-wave gyro-resonance oscillator, repetitive-pulse generation, feedback circuit, mode locking.

Financing: This work was supported by the Russian Science Foundation, grant No. 23-12-00291.

Corresponding author: Michael Nikolaevich Vilkov, vilkovmn@ipfran.ru

References

1. Kladukhin V. V., Khramtsov S. P., Yalov V. Y. Relativistic Backward-Wave Oscillator with Longitudinal-Slotted Diffraction Output // Technical Physics Letters. – 2024. – V. 50. – ¹. 2. – P. 190-193. https://doi.org/10.1134/S1063785023180062

2. Xiaoze L. et al. Experimental study of a Ku-band RBWO packaged with permanent magnet // IEEE Transactions on Electron Devices. – 2019. – V. 66. – ¹. 10. – P. 4408-4412. https://doi.org/10.1109/TED.2019.2936835

3. Xiao R. et al. Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field // Physics of Plasmas. – 2020. – V. 27. – ¹. 4. https://doi.org/10.1063/5.0002361

4. Rostov V. V. et al. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power // Physics of Plasmas. – 2016. – V. 23. – ¹. 9. https://doi.org/10.1063/1.4962189

5. Ginzburg N. S. et al. Generation of electromagnetic fields of extremely high intensity by coherent summation of Cherenkov superradiance pulses // Physical review letters. – 2015. – V. 115. – ¹. 11. – P. 114802. https://doi.org/10.1103/PhysRevLett.115.114802

6. Ginzburg N. S. et al. Ka-band 100-kW subnanosecond pulse generator mode-locked by a nonlinear cyclotron resonance absorber // Physical Review Applied. – 2021. – V. 16. – ¹. 5. – P. 054045.  https://doi.org/10.1103/PhysRevApplied.16.054045.

7. Denisov G. G., Kuzikov S. V., Savilov A. V. Q-switching in the electron backward-wave oscillator // Physics of plasmas. – 2011. – V. 18. – ¹. 10. https://doi.org/10.1063/1.3644472

8. Alberti S. et al. Nanosecond Pulses in a THz Gyrotron Oscillator Operating in a Mode-Locked Self-Consistent Q-Switch Regime // Physical review letters. – 2013. – V. 111. – ¹. 20. – P. 205101. https://doi.org/10.1103/PhysRevLett.111.205101

9. Bogomolov Y. L. et al. Nonstationary generation in free electron lasers // Optics Communications. – 1981. – V. 36. – ¹. 3. – P. 209-212. https://doi.org/10.1016/0030-4018(81)90359-X

10. Levush B. et al. Theory of relativistic backward-wave oscillators with end reflectors // IEEE transactions on plasma science. – 2002. – V. 20. – ¹. 3. – P. 263-280. https://doi.org/10.1109/27.142828

11. Ryskin N. M., Titov V. N. Self-modulation and chaotic regimes of generation in a relativistic backward-wave oscillator with end reflections // Radiophysics and Quantum Electronics. – 2001. – V. 44. – ¹. 10. – P. 793-806. https://doi.org/10.1023/A:1013717032173

12. Rozental R. M., Ginzburg N. S., Sergeev A. S. Tuning of the self-modulation period in a relativistic BWO with strong reflections // Radiophysics and Quantum Electronics. – 2007. – V. 50. – ¹. 12. – P. 942-945. https://doi.org/10.1007/s11141-007-0088-7

13. Totmeninov E. M., Rostov V. V. Generation of a sequence of powerful ultrashort microwave pulses based on the effect of superradiance of a relativistic backward-wave oscillator with reflectors at the ends of the interaction space // Technical Physics Letters. – 2021. – V. 47. – ¹. 1. – P. 46-49. https://doi.org/10.1134/S1063785021010119

14. Totmeninov E. M. et al. Experimental implementation of the method of generation of a sequence of ultrashort gigawatt Cherenkov superradiance pulses with a nanosecond repetition period // JETP Letters. – 2022. – V. 115. – ¹. 8. – P. 444-448. https://doi.org/10.1134/S0021364022100356

15. R.M. Rozental, S.V. Samsonov, A.A. Bogdashov, I.G. Gachev, A.N. Leont’ev, N.S. Ginzburg, Tech. Phys. Lett. 48, 43 (2022), https://doi.org/10.1134/S1063785022020079

16. Svelto O. et al. Principles of lasers. – New York : Springer, 2010. – V. 1. – P. 52. https://doi.org/10.1007/978-1-4419-1302-9

For citation:

Bogdashov A.A., Vilkov M.N., Gachev I.G, Ginzburg N.S., Zotova I.V., Rozental R.M., Samsonov S.V. Experimental observation of self-mode locking regimes in a gyro-resonant backward-wave oscillator with a feedback circuit. // Journal of Radio Electronics. – 2025. – ¹. 12. https://doi.org/10.30898/1684-1719.2025.12.2 (In Russian)