Journal of Radio Electronics. eISSN 1684-1719. 2025. №12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.12.4

 

 

 

NONLINEAR THERMAL MODEL OF A HIGH-TEMPERATURE
ANALOG MICROCIRCUITS WITH A NON-UNIFORM DISTRIBUTION
OF HEAT SOURCES IN THE CRYSTAL

 

I.V. Frolov1, A.M. Hodakov1, V.A. Sergeev1, D.V. Kleimenkin2

 

1Ulyanovsk Branch of the Kotelnikov Institute of Radioengineering and Electronics of RAS
432011, Russia, Ulyanovsk, Goncharova str., 48/2

2Don State Technical University

344000, Russia, Rostov-on-Don, Gagarin Square, 1

 

The paper was received December 1, 2025.

 

Abstract. A thermal model of an operational amplifier chip operating in the ambient temperature range of −60 °C to 200 °C was developed using the Comsol Multiphysics computer simulation environment. The chip's primary thermal power dissipation is generated by the output stage transistors, which are located asymmetrically near the edge of the chip. The model takes into account the nonlinear temperature dependence of the chip material's thermal conductivity and the mutual thermal influence of heat sources. The temperature distribution nonuniformity coefficient within the chip's chip was calculated for various ambient temperatures for three chip materials: silicon, silicon carbide, and gallium arsenide. It was found that the temperature distribution nonuniformity within the chip increases nonlinearly with increasing ambient temperature. The lowest nonuniformity value is achieved in a crystal made of silicon carbide, while the highest is achieved in a crystal made of gallium arsenide: at a temperature of 200 ºC, the distribution nonuniformity coefficient in a GaAs crystal is 3.3 times higher than in a 4H-SiC crystal. It is shown that accounting for the temperature dependence of the chip's current consumption (power consumption) allows for an increase in modeling accuracy of up to 10%. The developed model can be used in the design of high-temperature analog integrated circuits, including those with nonuniform heat source distribution.

Key words: analog microcircuit, silicon, gallium arsenide, silicon carbide, 3D thermal model, temperature distribution non-uniformity.

Financing: The research has been carried out at the expense of the Grant of the Russian Science Foundation No. 23-79-10069, https://rscf.ru/en/project/23-79-10069/

Corresponding author: Frolov Ilya Vladimirovich, ilya-frolov88@mail.ru

 

References

1. Jancke R. et al. Modeling and simulation of electro-thermal interaction effects in electronic circuits //Proc. 1st Conf. on multiphysics simulation: Advanced methods for industrial engineering. – 2010. – V. 1. – № 1. – P. 1-11.

2. Baccar S. et al. A behavioral and temperature measurements-based modeling of an operational amplifier using VHDL-AMS //2010 17th IEEE International Conference on Electronics, Circuits and Systems. – IEEE, 2010. – P. 343-346. https://doi.org/10.1109/ICECS.2010.5724523

3. Rahman A. et al. High-temperature SiC CMOS comparator and op-amp for protection circuits in voltage regulators and switch-mode converters //IEEE Journal of Emerging and Selected Topics in Power Electronics. – 2016. – Т. 4. – №. 3. – С. 935-945. https://doi.org/10.1109/JESTPE.2016.2584599

4. Rahman A. et al. High temperature data converters in silicon carbide CMOS //IEEE Transactions on Electron Devices. – 2017. – V. 64. – № 4. – P. 1426- 1432. https://doi.org/1432.10.1109/TED.2017.2665520

5. Baccar S. et al. Analog to digital converters for high temperature applications: The modeling approach issue //2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. – IEEE, 2010. – P. 550-554. https://doi.org/10.1109/IMTC.2010.5488109

6. Savidis I., Vaisband B., Friedman E. G. Experimental analysis of thermal coupling in 3-D integrated circuits //IEEE transactions on very large scale integration (VLSI) systems. – 2014. – V. 23. – № 10. – P. 2077-2089. https://doi.org/10.1109/TVLSI.2014.2357441

7. Фролов И.В., Ходаков А.М., Сергеев В.А., Клейменкин Д.В. Моделирование тепловых характеристик высокотемпературных монолитных интегральных схем с неоднородным распределением источников тепловыделения в кристалле [Modeling thermal characteristics of high-temperature monolithic integrated circuits with non-uniform distribution of heat sources in the crystal] // Журнал радиоэлектроники. – 2025. – № 4. https://doi.org/10.30898/1684-1719.2025.4.7

8. Taghikhani P. et al. Temperature-dependent characterization of power amplifiers using an efficient electrothermal analysis technique //IEEE transactions on microwave theory and techniques. – 2021. – V. 70. – № 2. – P. 1349-1360. https://doi.org/10.1109/TMTT.2021.3134664

9. Сергеев В. А., Ходаков А. М. Нелинейные тепловые модели полупроводниковых приборов [Nonlinear thermal models of semiconductor devices]. – Ульяновск: УлГТУ, 2012. – 160 с.

10. Sharma R. C. et al. Gallium arsenide and gallium nitride semiconductors for power and optoelectronics devices applications //Journal of Physics: Conference Series. – IOP Publishing, 2023. – V. 2426. – № 1. – P. 012008. https://doi.org/10.1088/1742-6596/2426/1/012008

11. NSM Archive – Physical Properties of Semiconductors [электронный ресурс]. – URL: http://www.ioffe.rssi.ru/SVA/NSM/Semicond\index.html (дата обращения 24.11.2025).

12. Wei R. et al. Thermal conductivity of 4H-SiC single crystals //Journal of Applied Physics. – 2013. – Т. 113. – №. 5. https://doi.org/10.1063/1.4790134

13. AD8229 datasheet [электронный ресурс]. – URL: https://www.analog.com/en/index.html (дата обращения 24.11.2025).

14. Galloway J., Bornoff R. Theta-JC Measurements: Steady-State Compared to Transient Methods // Electronics Cooling. – Fall 2024. – P. 24-29.

For citation:

Frolov I.V., Hodakov A.M., Sergeev V.A., Kleimenkin D.V. Nonlinear thermal model of a high-temperature analog microcircuits with a non-uniform distribution of heat sources in the crystal. // Journal of Radio Electronics. – 2025. – №. 12. https://doi.org/10.30898/1684-1719.2025.12.4 (In Russian)