Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.12.7

 

 

prediction OF noise IMMUNITY

OF P-band SATELLITE COMMUNICATION SYSTEM

AT STRONG DISTURBANCES OF IONOSPHERE

 

V.P. Pashintsev, M.V. Peskov, D.A. Mikhailov, P.A. Diptan

 

North Caucasian Federal University, 355017, Stavropol, Pushkin str., 1

 

The paper was received December 1, 2025.

 

Abstract. The structure of the construction and algorithm of the complex for predicting the noise immunity of P-band satellite communications systems in conditions of strong ionospheric disturbances has been developed based on the simulation of the results of GPS-monitoring of the total electronic content of the ionosphere, causing dispersion distortions, fading and intersymbol interference of received signals. The basis for solving this problem is the development of a methodology for determining the dependence of the probability of erroneous reception of satellite communications signals on the average signal-to-noise ratio at the receiver input, the parameters of the transmitted signals, the results of GPS-monitoring of the average value and small-scale fluctuations in the total electronic content of the ionosphere and the propagation angles of radio waves in satellite communications and navigation systems. In accordance with the stages of the methodology, the structure of the construction and the algorithm of the complex for predicting the noise immunity of satellite communication systems in the P-frequency range during strong disturbances of the ionosphere, which are accompanied by the occurrence of frequency-selective fading, intersymbol interference and dispersion distortions of the received signals, have been developed. Experimental results are presented for predicting the noise immunity of a P-band satellite communications system based on GPS-monitoring of the ionosphere using a GPStation-6 receiver and simulating strong ionospheric disturbances by increasing the average value and fluctuations of the total electronic content by 1...2 orders of magnitude.

Key words: noise immunity, satellite communication systems, ionosphere disturbances, GPS-monitoring, small-scale inhomogeneities, total electronic content, frequency-selective fading, intersymbol interference, dispersion distortions.

Financing: The research was carried out at the expense of a grant from the Russian Science Foundation ¹ 24-21-00295 (https://rscf.ru/en/project/24-21-00295/).

Corresponding author: Diptan Pavel Anatolevich, Pasha_StavArm@rambler.ru

 

References

1. Crane R.K. Ionospheric Scintillation. Proceeding of the IEEE, 1977, vol. 65, ¹. 2, pp. 180-199. https://doi:10.1109/proc.1977.10456

2. Aarons J. Global morphology of ionospheric scintillations. Proceedings of the IEEE, 1982, vol. 70, ¹. 4, pp. 360–378. https://doi.org/10.1109/proc.1982.12314

3. Groves Ê. Monitoring ionospheric scintillation with GPS. Colloquium on atmospheric remote sensing using the Global Positioning System, 2004, pp. 1-59.

4. Rino C.L. The Theory of Scintillation with Applications in Remote Sensing. John Wiley & Sons, Hoboken, New Jersey, 2011. 244 p. http://dx.doi.org/10.1002/9781118010211

5. Knepp D.L. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proceeding of the IEEE, 1983, vol. 71, ¹. 6, pp. 722–737. https://doi.org/10.1109/PROC.1983.12660

6. Beniguel Y., Hamel P.A. Global ionosphere scintillation propagation model for equatorial regions. Journal of Space Weather and Space Climate, 2011, vol. 1, ¹. 1. http://dx.doi.org/10.1051/swsc/2011004

7. Rino C.L., Owen J. The time structure of transionospheric radio wave scintillation. Radio Science, 1980, vol. 15, ¹. 3, pp. 479-489. https://doi.org/10.1029/RS015i003p00479

8. Yeh K.C., Liu C.H. Radio wave scintillations in the ionosphere. Proceedings of the IEEE, 1982, vol. 70, ¹. 4, pp. 324-360. https://doi.org/10.1109/PROC.1982.12313

9. Bogusch R.L., Gulgliano F.W., Knepp D.L., Michelet A.X. Frequency selective propagation effects on spread-spectrum receiver tracking. Proceedings of the IEEE, 1981, vol. 69, ¹. 7, pp. 787-796. https://doi.org/10.1109/PROC.1981.12073

10. Bogusch R.L., Gulgliano F.W., Knepp D.L. Frequency-selective scintillation effects end decision feedback equalization in high data-rate satellite links. Proceedings of the IEEE, 1983, vol. 71, ¹. 6, pp. 754-767. https://doi.org/10.1109/PROC.1983.12662

11. Secan J.A., Nickisch L.J., Knepp D.L., Snyder A.L., Kennedy E.J. Investigation of Plasma Phenomena in the Ionosphere Under Natural Conditions and Under Conditions Artificially Perturbed by HAARP. Air Force Research Laboratory, 2008. 122 p.

12. Maslov O.N., Pashintsev V.P. Modeli transionosfernykh radiokanalov i pomekhoustoichivost' sistem kosmicheskoi sviazi [Transionospheric radio channel models and noise immunity of space communication systems]. Infocommunication Technologies, (magazine supplement), 2006, vol. 4, 357 p. (in Russian).

13. Bedrosian E. Transionospheric propagation of FM signals, 1970, vol. 18, ¹. 2, pp. 102-109. https://doi.org/10.1109/TCOM.1970.1090338

14. Ryzhkina T.E., Fedorova L.V. The Investigation of statistical and spectral characteristics of VHF-UHF transatmospheric. Journal of Radio Electronics, 2001, no. 2. (in Russian) http://jre.cplire.ru/win/feb01/3/text.html

15. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication, Geneva, 2012. 24 p.

16. Fremouw E.J., Secan J.A. Modeling and scientific application of scintillation results. Radio Science, 1984, vol. 19, ¹. 3, pp. 687–694. https://doi.org/10.1029/RS019i003p00687

17. Pashintsev V.P., Kalmykov I.A., Peskov M.V., Mikhailov D.A. Predicting method for the noise immunity of P-band satellite communications based on the GPS-monitoring results. GPS Solutions, 2025, vol. 29, article ¹. 112. https://doi.org/10.1007/s10291-025-01862-4

18. Hinks J.C., Humphreys T.E., O’Hanlon B., Psiaki M.L., Kintner P.M.Jr. Evaluating GPS Receiver Robustness to Ionospheric Scintillation. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, 2008, pp. 309-320.

19. Pashintsev V.P., Peskov M.V., Kalmykov I.A., Zhuk A.P., Toiskin V.E. Method for forecasting of interference immunity of low frequency satellite communication systems. AD ALTA-Journal of interdisciplinary research, 2020, vol. 10, ¹. 1, pp. 367-375. https://doi.org/10.33543/1001

20. Cannon P.S., Groves K., Fraser D.J., Donnelly W.J., Perrier K. Signal distortion on VHF/UHF transionospheric paths: First results from the Wideband Ionospheric Distortion Experiment. Radio Science, 2006, vol. 41, ¹. 5. https://doi.org/10.1029/2005RS003369

21. Pashintsev V.P., Peskov M.V., Mikhailov D.A., Kiselyov N.V. Estimation of the Influence of the Dispersion and Diffraction Properties of the Ionosphere on the Transionospheric Channel Bandwidth. Geomagnetism and Aeronomy, 2024, vol. 64, ¹. 2, pp. 248–263. https://doi.org/10.1134/S0016793223601059

22. Pashintsev V.P., Peskov M.V., Tsimbal V.A. Analysis of the causes of energy losses during processing of signals with frequency-selective fading and intersymbol interference. Proceedings of the 22th International Conference on Digital Signal Processing and its Applications (DSPA), 2020, pp. 1–5. https://doi.org/10.1109/DSPA48919.2020.9213288

23. Kolosov M.A., Armand N., Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoi svyazi [Propagation of radio waves in space communications]. Moscow, Svyaz. 1969. 155 p. (In Russia)

24. Pashintsev V.P., Linets G.I., Slyusarev G.V., Peskov M.V., Melnikov S.V. GPS-monitoring of small-scale fluctuations of total electron content of ionosphere. International Journal of Advanced Research in Engineering and Technology, 2020, vol. 11, ¹. 5, pp. 341–352. https://doi.org/10.34218/IJARET.11.5.2020.035

25. Pashintsev V.P., Peskov M.V., Mikhailov D.A., Senokosov M., Solomonov D. Method for GPS-Monitoring of Small-Scale Fluctuations of the Total Electron Content of the Ionosphere for Predicting the Noise Immunity of Satellite Communications. In: Chemin DY-HH (ed) Ionosphere – New Perspectives. IntechOpen, Rijeka, 2023. pp. 13–33. https://doi.org/10.5772/intechopen.1001520

26. Rytov S.M., Kravtsov YU.A., Tatarskii V.I. Vvedenie v statisticheskuyu radiofiziku. CH. 2 Sluchainye polya. [Introduction to statistical radiophysics. Part 2. Random fields.]. Moscow, Nauka. 1978. 463 p. (In Russia)

27. Bakanov D.V., Moroz N.V., Pukhov G.G., Salyuk D.V., Timchuk A.A. Primenenie mnogofunktsional'noi sistemy personal'noi sputnikovoi svyazi «Gonets-D1M» dlya obespecheniya informatsionnogo vzaimodeistviya mezhdu udalennymi abonentami [Application of the multifunctional personal satellite communication system «Gonets-D1M» to ensuring information interaction between remote subscribers]. Tekhnika sredstv svyazi, 2018, ¹. 2 (142), pp. 63–67. (In Russia)

28. Fink L.M. Teoriya peredachi diskretnyh soobshchenij [Theory of discrete messages transmission]. Moscow, Soviet Radio Publ., 1970. 728 p. (in Russian).

29. Simon M.K., Alouini M-S. Digital communication over fading channels: a unified approach to performance Analysis. John Wiley & Sons, Inc. 2000. 546 p. ISBN 0-471-20069-7.

30. Nazarov L.E., Antonov D.V., Batanov V.V., Zudilin A.S., Smirnov V.M. Modeli stsintillyatsii signalov pri rasprostranenii po ionosfernym sputnikovym radioliniyam [The scintillation models for signal propagation through sattellite ionospheric channels]. RENSIT. 2019, vol. 11, ¹. 1. pp. 57–64. https://doi.org/10.17725/Rensit.2019.11.057 (In Russia)

31. Nazarov L.E., Smirnov V.M. Veroyatnostnye kharakteristiki priema signalov s zamiraniem pri rasprostranenii po sputnikovym ionosfernym radioliniyam [The Error-Performances of Fading Signals Propagated Through the Ionospheric Satellite Channels]. Fizicheskie osnovy priborostroeniya, 2020, vol. 9. ¹. 4, pp. 18–23. https://doi.org/10.25210/jfop-2004-018023 (In Russia)

32. Nazarov L.E., Smirnov V.M. Otsenivanie veroyatnostnykh kharakteristik priema signalov s ispol'zovaniem modelei zamiranii pri rasprostranenii po transionosfernym liniyam [Estimation of signal reception probability characteristics using models of fading transionosphere channels]. Journal of Radio Electronics, 2020, ¹. 11. https://doi.org/10.30898/1684-1719.2020.11.7 (In Russia)

33. Afraimovich E.L., Perevalova N.P. GPS monitoring of the Earth upper atmosphere. Irkutsk: Institut solnechno-zemnoi fiziki SO RAN, 2006. 479 ñ. ISBN 5-98277-033-7. (In Russia)

34. Carrano C.S., Groves K.M. The GPS segment of the AFRL-SCINDA global network and the challenges of real-time TEC estimation in the equatorial ionosphere. Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, 2006, pp. 1036–1047.

35. Novatel Inc. GPStation-6. GNSS Ionospheric Scintillation and TEC Monitor (GISTM) Receiver User Manual, 2012. 89 p. Available at: https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000132/om-20000132.pdf

36. Fremouw E.J., Leadabrand R.L., Livingston R.C., Cousins M.D., Rino C.L., Fair B.C., Long R.A. Early results from the DNA Wideband satellite experiment-Complex-signal scintillation. Radio Science, 1978, vol. 13, ¹. 1, pp. 167–187. https://doi.org/10.1029/RS013i001p00167

37. Matassa C.K. Comparing the capabilities and performance of the ultra high frequency follow-on system with the mobile user objective system. PhD Thesis, Monterey, California. Naval Postgraduate School, 2011. 72 p.

For citation:

Pashintsev V.P., Peskov M.V., Mikhailov D.A., Diptan P.A. Prediction of noise immunity of P-band satellite communication system at strong disturbances of ionosphere // Journal of Radio Electronics. – 2025. – ¹. 12. https://doi.org/10.30898/1684-1719.2025.12.7 (In Russian)