Journal of Radio Electronics. eISSN 1684-1719. 2025. №12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.12.8

 

 

 

The influence OF Fe2O3 ON THE CAPACITance
OF CARBON-COATED POROUS SILICON

 

D. M. Sedlovets, V.V. Starkov

 

Institute of Microelectronics Technology and High-purity Materials of RAS
142432, Russia, Chernogolovka, Academician Ossipyan str., 6

 

The paper was received December 5, 2025.

 

Abstract. Porous silicon (pSi) is a promising material for use in the electrodes of planar microcapacitors. These porous layers are integrated directly into the silicon wafer and exhibit high resistance to repeated charge-discharge cycles. Morphologically identical structures, silicon nanowires, are inferior to pSi layers in terms of stability but surpass them in capacitance. This work addresses the pressing problem of increasing pSi capacitance by additional coating deposition. The conditions for the electrochemical deposition of iron metahydroxide were experimentally determined. Annealing this iron metahydroxide results in the formation of iron (III) oxide on the surface of a carbon-coated pSi structure (pSi/C). Raman spectroscopy confirmed the crystalline structure of the iron oxide. For the first time, the effect of an additional α-Fe₂O₃ layer on the electrochemical properties of pSi/C was studied using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The results showed that the electrochemical capacitance of the electrodes increased after Fe₂O₃ deposition. The resulting composites are highly stable, with no capacitance loss after 20,000 measurement cycles, and can be used as cathodes in asymmetric planar microcapacitors. Further studies include measurements in an organic electrolyte and the development and testing of an asymmetric device with pSi/C/Fe₂O₃ structures as the cathode.

Key words: porous silicon, carbon coating, iron oxide, electrochemical capacitance, planar microcapacitors.

Financing: This work was supported by the Russian Science Foundation under Grant no. 24-29-00545.

Corresponding author: Sedlovets Daria Mikhailovna, sedlovets@iptm.ru

References

1.  Rowlands S., Latham R., Schlindwein W. Supercapacitor devices using porous silicon electrodes // Ionics. ‒ 1999. ‒ T. 5, № 1-2. ‒ C. 144-149.

2. Ortaboy S., Alper J. P., Rossi F., Bertoni G., Salviati G., Carraro C., Maboudian R. MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors // Energy & Environmental Science. ‒ 2017. ‒ T. 10, № 6. ‒ C. 1505-1516. https://doi.org/10.1039/C7EE00977A

3. Sedlovets D. M., Starkov V. V., Ulianova V. V. N-doped graphene-like coating for improved microcapacitance of nanoporous silicon // Materials Science in Semiconductor Processing. ‒ 2025. ‒ T. 198. ‒ C. 109741. https://doi.org/10.1016/j.mssp.2025.109741

4. Desplobain S., Gautier G., Semai J., Ventura L., Roy M. Investigations on porous silicon as electrode material in electrochemical capacitors // physica status solidi c. ‒ 2007. ‒ T. 4, № 6. ‒ C. 2180-2184. https://doi.org/10.1002/pssc.200674418

5. Grigoras K., Keskinen J., Grönberg L., Ahopelto J., Prunnila M. Coated porous Si for high performance on-chip supercapacitors // Journal of Physics: Conference Series. ‒ T. 557 ‒IOP Publishing, 2014. ‒ C. 012058. http://dx.doi.org/10.1088/1742-6596/557/1/012058

6. Wu T.-H., Chang C.-T., Wang C.-C., Parwaiz S., Lai C.-C., Chen Y.-Z., Lu S.-Y., Chueh Y.-L. Few-layer graphene sheet-passivated porous silicon toward excellent electrochemical double-layer supercapacitor electrode // Nanoscale research letters. ‒ 2018. ‒ T. 13, № 1. ‒ C. 1-9. https://doi.org/10.1186/s11671-018-2646-7

7. Lu P., Müller L., Hoffmann M., Chen X. Taper silicon nano-scaffold regulated compact integration of 1D nanocarbons for improved on-chip supercapacitor // Nano Energy. ‒ 2017. ‒ T. 41. ‒ C. 618-625. https://doi.org/10.1016/j.nanoen.2017.10.019

8. Bolotov V., Nesov S., Ponomareva I., Knyazev E., Ivlev K., Stenkin Y. A., Roslikov V. The formation of nanocomposites carbon nanotubes/porous silicon for supercapacitor electrodes // AIP Conference Proceedings. ‒ T. 2310 ‒ AIP Publishing, 2020. https://doi.org/10.1063/5.0034212

9. Thamri S., Raouadi M. Improved capacitance of NiO and nanoporous silicon electrodes for micro-supercapacitor application // Journal of Materials Science: Materials in Engineering. ‒ 2025. ‒ T. 20, № 1. ‒ C. 1. https://doi.org/10.1186/s40712-024-00208-1

10. Lu P., Halvorsen E., Ohlckers P., Müller L., Leopold S., Hoffmann M., Grigoras K., Ahopelto J., Prunnila M., Chen X. Ternary composite Si/TiN/MnO2 taper nanorod array for on-chip supercapacitor // Electrochimica Acta. ‒ 2017. ‒ T. 248. ‒ C. 397-408. https://doi.org/10.1016/j.electacta.2017.07.162

11. Sedlovets D.M., Starkov V.V., Ulianova V.V. Electrochemical capacitance of composites based on porous silicon, carbon and manganese (IV) oxide // Russian Microelectronics. ‒ In press.

12. Lee J. W., Ko J. M., Kim J.-D. Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes // Electrochimica Acta. ‒ 2012. ‒ T. 85. ‒ C. 459-466. https://doi.org/10.1016/j.electacta.2012.08.070

13. Zhu J., Hu J., Wei L., Liu J., Zheng M. Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance // Journal of Power Sources. ‒ 2018. ‒ T. 393. ‒ C. 135-144. https://doi.org/10.1016/j.jpowsour.2018.05.022

14. Mai L.-Q., Minhas-Khan A., Tian X., Hercule K. M., Zhao Y.-L., Lin X., Xu X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance // Nature communications. ‒ 2013. ‒ T. 4, № 1. ‒ C. 2923. https://doi.org/10.1038/ncomms3923

15. Wu M.-S., Lee R.-H. Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors // Journal of The Electrochemical Society. ‒ 2009. ‒ T. 156, № 9. ‒ C. A737. https://doi.org/10.1149/1.3160547

16. Mitina A.A., Yakimov E.E., Knyazev M.A., Korotitsky V.I., Redkin A.N. Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors // Nanomaterials. ‒ 2025. ‒ T. 15, № 16. ‒ C. 1222. https://doi.org/10.3390/nano15161222

17. De Faria D. L., Venâncio Silva S., de Oliveira M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides // Journal of Raman spectroscopy. ‒ 1997. ‒ T. 28, № 11. ‒ C. 873-878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

18. Makrides A. Dissolution of iron in sulfuric acid and ferric sulfate solutions // Journal of the Electrochemical Society. ‒ 1960. ‒ T. 107, № 11. ‒ C. 869. https://doi.org/10.1149/1.2427532

19. Esarev I.V., Agafonov D.V., Surovikin Y.V., Nesov S.N., Lavrenov A.V. On the causes of non-linearity of galvanostatic charge curves of electrical double layer capacitors // Electrochimica Acta. ‒ 2021. ‒ T. 390. ‒ C. 138896. https://doi.org/10.1016/j.electacta.2021.138896

20. Soam A., Parida K., Kumar R., Dusane R. O. Silicon-MnO2 core-shell nanowires as electrodes for micro-supercapacitor application // Ceramics International. ‒ 2019. ‒ T. 45, № 15. ‒ C. 18914-18923. https://doi.org/10.1016/j.ceramint.2019.06.127

21. Moulai F., Cherchour N., Messaoudi B., Zerroual L. Electrosynthesis and characterization of nanostructured MnO2 deposited on stainless steel electrode: a comparative study with commercial EMD // Ionics. ‒ 2017. ‒ T. 23. ‒ C. 453-460. https://doi.org/10.1007/s11581-016-1842-7

22. Dinh K. H., Roussel P., Lethien C. Advances on microsupercapacitors: real fast miniaturized devices toward technological dreams for powering embedded electronics? // ACS omega. ‒ 2023. ‒ T. 8, № 10. ‒ C. 8977-8990. https://doi.org/10.1021/acsomega.2c07549

23. Alper J. P., Wang S., Rossi F., Salviati G., Yiu N., Carraro C., Maboudian R. Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors // Nano letters. ‒ 2014. ‒ T. 14, № 4. ‒ C. 1843-1847. https://doi.org/10.1021/nl404609a

For citation:

Sedlovets D.M., Starkov V.V. The influence of Fe2O3 on the capacitance of carbon-coated porous silicon. // Journal of Radio Electronics. – 2025. – №. 12. https://doi.org/10.30898/1684-1719.2025.12.8 (In Russian)