"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2017

contents             full textpdf   

Radiophysical studies of sea ice properties by means of radar polarimetry technique

 

L. N. Zakharova, A. I. Zakharov, M. W. Sorochinskii

Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Brunch, Vvedensky Sq. 1, Fryazino Moscow region, 141120, Russia

 

The paper is received on January 31, 2017

 

Abstract. Modern remote sensing techniques of sea ice monitoring using polarimetric synthetic aperture radar observations are discussed, as well as backscattered signal decomposition techniques and polarimetric parameters characterizing the underlying surface. The results of experimental studies of sea ice with single polarization SARs in various signal frequency bands are presented. It is stated that single polarization measurements may provide the distinction of first year ice and multiyear ice in water areas, however varying observation conditions, especially weather conditions, may lead to strong alterations of the sea ice and water radiophysical properties and corruption of the ice classification results. Polarimetric radar observations are described in the paper, and different ways of polarization channels assimilation and combination are discussed. Backscatter polarimetric parameters may be split in two groups. The efficiency of first group of parameters: polarimetric intensity ratio, polarimetric phase difference, polarization channels correlation coefficient is demonstrated using experimental data described in open literature. It is shown that the use of these parameters and their statistical properties significantly expands an amount of sea ice types being discriminated. An application of second group of parameters derived in various decomposition techniques like as Freeman-Durden and Cloude-Pottier is discussed also. It is mentioned that though these parameters provide valuable information about sea ice scattering mechanisms, their standalone utilization is not so justified as surface scattering mechanism is typically dominating in ice covers backscatter. Polarimetric radar observations should be considered as preferable technique of sea ice observations as they provide qualitatively new information describing sea ice covers in addition to capability of single-channel configurations.

Key words: radar polarimetry, models of radar scattering, synthetic aperture radars, sea ice.

References

1.     Savelyev B.A. Glyatsiologiya. [Glaciology]. Moscow, Moscow State University Publ. 1991. 288 p. (In Russian)

2.     SAR. Synthetic aperture radar. Earth observing system. Instrument panel report: Earth observing system reports, volume IIf /National Aeronautics and Space Administration (NASA).

3.     Smirnov V.G. Satellite Monitoring of dangerous ice formations in the areas of maintenance on offshore hydrocarbon deposites. Problemy Arktiki i Antaktiki - Arctic and Antarctic Problems, 2012, No. 1 (91). (In Russian)

4.     Baskakov et al. Problems of Radar Sensing of Sea Ice from an Offshore Driolling Platform. Zhurnal Radioelektroniki - Journal of Radio Electronics,  2014, No. 7. Available at http://jre.cplire.ru/jre/jul14/9/text.pdf. (In Russian)

5.     Volkov A.M. et al. Principles of construction of a new generation of space systems for ice and hydrometeorological observations. Issledovanie Zemli iz kosmosa – Earth Observation from Space, 1995, No. 1, p. 63-73. (In Russian)

6.     Vagapov R.Kh., Gavrilo V.P., Kozlov A.I. et al. Distantsionnye metody issledovaniya morskih l’dov. [Remote sensing techniques for sea ice exploration. Ed. by A.I. Kozlov] St. Petersburg. Gidrometeoizdat Publ., 1993. (In Russian)

7.     Falkingham J.C. Global satellite observation requirements for floating ice focusing on synthetic aperture radar. Contract report for Environment Canada, March 2014. Available at: https://www.wmo.int/pages/prog/sat/meetings/documents/PSTG-4_Doc_08-04_GlobSatObsReq-FloatingIce.pdf

8.     Scheuchl B. Sea ice monitoring using spaceborne multipolarization and polarimetric SAR imagery. The University of British Columbia PhD thesis, 2006, April.

9.     Mel’nik Yu.A. Et al. Radiolokatsionnye metody issledovaniya Zemli [Radar Techniques of the Earth Exploration. Ed. by Yu. A. Mel’nik] Moscow. Sov. Radio Publ. 1980. (In Russian)

10. K. M. Case; P. F. Zweifel. Linear transport theory. Reading, Mass.: Addison-Wesley Pub. Co., 1967. 342 p.

11.  Burtsev A.I., Krovotyntsev V.A., Nazirov M. et al. Radar maps of Arctic and Antarctic by Kosmos-1500 Satellite data and preliminary results. Issledovanie Zemli iz kosmosa – Earth Observation from Space, 1985, No. 3, pp. 54‑63. (In Russian)

12.  Matsuoka T., Uratsuka S., Takahashi A., et al. A backscattering model for bubbles in lake ice and comparisons with satellite and airborne SAR data. Proc. of IEEE IGARSS’99, Hamburg, Germany, June 30-July 2, 1999.

13. Nghiem S.V., Kwok R., Yueh S.H., and Drinkwater M.R. Polarimetric signatures of sea ice. 1. Theoretical model. Journal of geophysical research, 1995, vol. 100, no. C7, pp. 13665 - 13679.

14. Nghiem S.V., Kwok R., Yueh S.H., and Drinkwater M.R. Polarimetric signatures of sea ice. 2. Experimental observations// Journal of geophysical research, 1995, vol. 100, no. C7, pp. 13681 - 13698.

15.  Icewatch. Real-time sea ice monitoring of the Northern sea ice route using satellite radar technology. Final report: Technical report No. 113/ Nansen Environmental and Remote Sensing Center (NERSC), 1997

16.  Dierking W. and Wesche C. C-Band radar polarimetry—useful for detection of icebergs in sea ice? IEEE Transactions on Geoscience and Remote Sensing, 2014, vol. 52, no. 1, pp. 25-37.

17. Pottier E., Lee J.-S., Ferro-Famil L. Advanced Concepts //PolSARpro V3.0 – Lecture Notes. Available at: https://earth.esa.int/documents/653194/656796/LN_Advanced_Concepts.pdf

18.  Moen M.-A. N., Doulgeris A. P., Anfinsen S. N., Renner A. H. H., Hughes N., Gerland S., and. Eltoft T. Comparison of automatic segmentation of full polarimetric SAR sea ice images with manually drawn ice charts. The Cryosphere Discuss., 2013, no 7, pp. 2595–2634.

19.  Dabboor M., Geldsetzer T. Towards sea ice classification using simulated RADARSAT Constellation Mission compact polarimetric SAR imagery. Remote Sensing of Environment, 2014, no. 140, pp. 189–195.

20. Ferro-Famil L., Pottier E., and Lee J.-S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha–Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 2001, vol. 39, no. 11, pp. 2332-2342.

21.  Haldar D., Das A., Mohan S., Pal O., Hooda R.S., and Chakraborty M. Assessment of L-band SAR data at different polarization combinations for crop and other landuse classification. Progress in electromagnetics research B, 2012, vol. 36, pp. 303-321.

22.   Singh G., Yamaguchi Y., and Park S.-E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Transactions on Geoscience and Remote Sensing, 2013, vol. 51, no. 5, pp. 3014-3022.

23.  Pottier E., Lee J.S. Application of the «H/A/a» polarimetric decomposition theorem for unsupervised classification on fully polarimetric SAR data based on the Wishart distribution. Proc. of the CEOS SAR Workshop, Toulouse, 26-29 October 1999, ESA SP-450, March 2000.

24. Scheuchl B., Caves R., Cumming I., Staples G. H/A/a-based classification of sea ice using SAR polarimetry. Proceedings of the 23rd Canadian Symposium on Remote Sensing, Quebec City, August 21-24, 2001.

25.  Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I., and Papathanassiou K.P. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 2013, March, pp. 6-43.

26.   Marapareddy R., Aanstoos J.V. and Younan N.H. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery. Sensors, 2016, v. 16, p. 898.

27.   Benz U., Pottier E. Object Based Analysis of Polarimetric SAR Data in Alpha-Entropy-Anisotropy Decomposition Using Fuzzy Classification by eCognition Proc. of IEEE IGARSS’01, July 9–13, 2001, Sydney, Australia.

28.  Cloude S., and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 1997, vol. 35, no. 1, pp. 68-78.

29.  An W., Cui Y., and Yang J. Three-component model-based decomposition for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 6, pp. 2732–2739.

30. An W., Cui Y., Yang J. Three-component decomposition for polarimetric SAR. Proñ. of IEEE IGARSS’2009. July 12-19, 2009, Cape Town, South Africa.

31.  Freeman A., Durden S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 1998, vol. 36, no. 3, pp. 963-973.

32.  Eltoft T., Doulgeris A., Grahn J. Model-based polarimetric decomposition of Arctic sea. Proc. of 10th European Conference on Synthetic Aperture Radar(EUSAR’2014), 3-5 June 2014, Berlin, Germany.

33.  Cui Y., Yamaguchi Y., Yang J., Park S.-E., Kobayashi H. and Singh G. Three-component power decomposition for polarimetric SAR data based on adaptive volume scatter modeling. Remote Sensing, 2012, no 4, pp. 1559-1572.

34.  Zhang H., Liu M., and Wang C. A Three-Component Scattering Model for Compact Polarimetric SAR Data Generated from TerraSAR-X, TerraSAR-X Data. Science Team Meeting. DLR – Oberpfaffenhofen, 14-16 February, 2011.

35. Yamaguchi Y., Sato A., Boerner W.-M., Sato R., and Yamada H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Transactions on Geoscience and Remote Sensing, 2011, vol. 49, no. 6, pp. 2251-2258.

36. Singh G., Yamaguchi Y., and Park S.-E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Transactions on Geoscience and Remote Sensing, 2013, vol. 51, no. 5, pp. 3014-3022.

37.   Yamaguchi Y., Moriyama T., Ishido M., and Yamada H. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2005, vol. 43, no. 8, p. 1699-1706.

38.   Kalmykov A.I., Kurekin A.S., Efimov V.B. et al. Side-looking Radar Kosmos-1500. Issledovanie Zemli iz kosmosa – Earth Observation from Space. 1985. No. 3. P. 76-83. (In Russian)

39.   Bushuev A.V., Grischenko V.D., Masanov A.D. Sea ice detection on satellite radar images. Issledovanie Zemli iz kosmosa – Earth Observation from Space. 1985. No. 3. Ñ. 9-15.

40.   Carsey F.D., Holt B., Martin S., et al. Weddel - Scotia sea marginal ice zone observations from space October, 1984. Journal of Geophysical Research. 1986, vol. 91, No. C3, p. 3920.

41.  Martin S., Holt B., Cavalieri D., et al. Shuttle imaging Radar-B (SIR-B) Weddal sea ice observations: a comparison of SIR-B and SMMR ice concentrations. Journal of Geophysical Research, 1987, vol. 92. No. C7, p.7173.

42.  Kondratiev V.A., Melentyev V.V., Bobylev L.P. et al. An experience of practical utilization the ERS-1 SAR images for Northern Sea Route monitoring and elaboration of hydrometeorological support of navigation. Issledovanie Zemli iz kosmosa – Earth Observation from Space. 1995. No. ¹ 1, p. 74-88.

43.  Drinkwater M.R. Kwok R., Winebrenner D.P., and Rignot E. Multifrequency polarimetric aperture radar observations of sea ice. Journal of geophysical research, 1991, vol. 96, no. C11, pp. 20679 – 20698

44.   Nghiem S.V. and Bertola C. Study of multi polarization C-band backscatter signatures for Arctic sea ice mapping with future satellite SAR. Canadian Journal of Remote Sensing, 2001, vol. 27, no. 5, pp. 387-402.

 

For citation:

L. N. Zakharova, A. I. Zakharov. M. W. Sorochinskii. Radiophysical studies of sea ice properties by means of radar polarimetry technique. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 2. Available at http://jre.cplire.ru/jre/feb17/1/text.pdf. (In Russian)