"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2017

contents             full textpdf   

Compact quadrifillar helix antenna

D. A. Demin, E. S. Stukalova, I. V. Filatov, N. P. Chubinsky

Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia 

 

The paper is received on February 3, 2017

 

Abstract.  In this article a compact printed quadrifillar helix antenna (QHA) is introduced. It is designed for S-band operation as a part of a narrowband telecommunication radio channel for small-scale satellites. The antenna is of resonant type. The length of its open-ended helix elements  corresponds to the second order resonance. Compared to the first-order resonance QHA, this antenna has cleaner circular polarization  ( within   range ±68°) and a wider radiation pattern () at the cost of increased height . The height of the antenna is reduced   by dielectric loading and meandering of antenna helix elements.  It is 30% lower than height of the conventional QHA.  Size reduction leads to decreasing relative bandwidth down to 1 % and dropping input impedance down to 10..12 Ohms. To match a conventional 50 Ohm coaxial line and provide proper phase and amplitude relations, a compact feed network is designed. It consists of two-port impedance-transforming Wilkinson power splitters combined in a two-stage structure. First stage splitter scales output impedance down to 25 Ohms, second stage —  down to 12.5 Ohms thus providing nearly ideal match to the proposed antenna input impedance. Microstrip delay lines are used to adjust phases of the output signals. Insertion loss of the proposed network is -1 dB higher than for ideal network (6 dB), while phase error is less than   within antenna operation range.

Keywords: quadrifillar helix antenna, Wilkinson splitter, circular polarization, isotropic radiation.

References:

[1] S. X. Ta, I. Park and R. W. Ziolkowski, "Crossed Dipole Antennas: A review." IEEE Antennas and Propagation Magazine. 2015. Vol. 57. No. 5. P. 107-122.

 [2] S.-W. Qu, C. H. Chan, and Q. Xue, "Wideband and high-gain composite cavity-backed crossed triangular bowtie dipoles for circular polarized radiation."  IEEE Trans. Antennas Propag. 2010. Vol. 58.  No. 10.  P. 3157–3164.

[3]  C.-M. Tran, H. Hafdallah-Ouslimani, L. Zhou, A. C. Priou, H. Teillet, J.-Y. Daden, and A. Ourir, "High impedance surfaces based antennas for high data rate communications at 40 GHz." Progress In Electromagnetics Research C. 2010. Vol. 13. P. 217-229.

[4] S. E. Bankov, A. S. Bychkov, A. G. Davydov, A. A. Kurushin . Multi-conductor quadrifilar antennas.  Zhurnal radioelectroniki - Journal of Radio Electronics.  2010. ¹9. Available at: http://jre.cplire.ru/jre/sep10/1/text.html

[5] Y. Letestu, A. Sharaiha, " Broadband folded printed quadrifilar helical antenna."   IEEE Transactions on Antennas and Propagation. 2006. Vol. 54. No. 5. P. 1600-1604.

[6] A. Sharaiha, C. Terret, "Analysis of quadrifilar resonant printed helical antenna for mobile communications"  IEE Proceedings H - Microwaves, Antennas and Propagation. 1993. Vol. 140. No. 4. P. 269-273.

[7] L.I. Parad, R.L. Moynihan, "Split-Tee Power Divider."  IEEE Transactions on Microwave Theory and Techniques. 1965. Vol. 13. No. 1. P. 91-95.

[8] D.A.Demin, I.V.Filatov, N.P.Chubinsky. Compact quadrifillar helix antenna. 4-th All Russian microwave conference. 2016. Edition of Kotel’nikov Inst. of Radio Engineering and Electronics of RAS. 2016.

 

For citation:
D.A.Demin, E.S.Stukalova, I.V.Filatov, N.P.Chubinsky. Compact quadrifillar helix antenna. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 2. Available at http://jre.cplire.ru/jre/feb17/14/text.pdf. (In Russian)