"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2018

contents of issue       DOI  10.30898/1684-1719.2018.2.13     full text in English (pdf) 

THE INTERACTION OF ELECTROMAGNETIC WAVES WITH VO2 NANOSIZED SPHERES AND FILMS IN OPTICAL AND EXTREMELY HIGH FREQUENCY RANGE

 

V.V. Koledov1, V.G. Shavrov1, N.V. Shahmirzadi2, T. Pakizeh2, A.P. Kamantsev1, D.S. Kalenov1, M.P. Parkhomenko1, S.V. von Gratowski1, A.V. Irzhak3,4, V.M. Serdyuk5, J.A. Titovitsky5, A.A. Komlev6, A.E. Komlev6, D.A. Kuzmin7, I.V. Bychkov7

 

1Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

2Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran 19697, Iran

3National University of Science and Technology MISiS, Leninskii pr. 4, Moscow 119049, Russia

4Institute of Microelectronic Technology and High Purity Materials of Russian Academy of Sciences, Ac. Osipyana 6, Chernogolovka, Moscow Region 142432, Russia

5Institute of Applied Physical Problems, Belarusian State University, Kurchatova 7, Minsk 220045, Belarus

6Saint-Petersburg Electrotechnical University “LETI”, Prof. Popova 5, St.-Petersburg 197376, Russia

7Chelyabinsk State University, Br. Kashirinykh 129, Chelyabinsk 454001, Russia 

The paper is received on February 20, 2018 

Abstract. Recently the interaction effects of electromagnetic waves (EMW) with metallic nanoparticles and holes in nanosized films, called nano-antennas (NAs) attract great interest because of prospective applications in sensors technology.  The conventional NAs and nanoparticles have fixed functionality, therefore the tunability of these structures are desired. One of the conventional method to obtain tunability is exploiting phase transition (PT) materials. Vanadium dioxide (VO2) is known as a PT material and its complex dielectric constant are varied by temperature due to structural transformation, accompanying metal-insulator transition (MIT). This material is an insulator at room temperature (RT) and becomes metal above a critical temperature (Tc=340 K). Hence, this material has emerged new applications in various fields. In this paper, VO2 film on glass substrate were prepared and investigated in extremely high frequency (EHF) range (27–37 GHz). Then submicron holes arrays were formed on VO2 films and their optical Raman spectra were studied. The special attention is paid on temperature dependence of the properties of films, holes and spheres. The study of EHF response of the nanosized VO2 films reveals strong anomalies in the temperature range of metal-insulator transition. The submicron holes and arrays show strong change of the Raman spectra at the wavelength 530 nm due to heating by laser beam. Eventually, the optical properties of the homogeneous nonmagnetic VO2 nanospheres embedded in the air are studied theoretically. The size effects on the optical properties of the VO2 nanosphere are investigated and presented. In VO2 nanosphere, converting into the metallic phase by heating leads to formation of a localized surface plasmon resonance (LSPR) which red shifts slightly by increasing dimension. The increment in the dimension of nanosphere in insulator case, results in the appearance of a peak in the visible wavelength most probably due to the excitation of combined electromagnetic modes. The optical spectra of VO2 nanoparticle are much broader than that of silver nanosphere, which its associated localized electric field in form of dipolar mode is more intense than in VO2 case. However, the LSPR of VO2 can be thermally switched, making this material peculiar for recent advanced applications.

Keywords: phase transition, VO2, nano-antenna, nano-spheres, nano-holes, surface plasmon resonance, Raman spectrum, extremely high frequency, optical frequency.

References

1. Zheludev N.I., Plum E. Reconfigurable nanomechanical photonic metamaterials Nature Nanotechnology, 2016, Vol. 11, No. 1, P. 16.

2. H.-T. Chen, J.F. O'Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, Vol. 2, No. 5

3. Y.C. Jun, E. Gonzales, J.L. Reno, E.A. Shaner, A. Gabbay, I. Brener. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics express, 2012, Vol. 20, No. 2, P. 1903-1911.

4. H.-T. Chen, W. J. Padilla, M. J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, Vol. 3, No. 3, P. 148.

5. H.T. Chen, W. J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, and R.D. Averitt. Active terahertz metamaterial devices. Nature, 2006, Vol. 444, No. 7119, P. 597.

6. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Z. Zhang. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Applied Physics Letters, 2007, Vol. 90, No. 1, 011112.

7. F.L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens. Electrically controllable fishnet metamaterial based on nematic liquid crystal. Optics Express, 2011, Vol. 19, No. 2, P. 1563-1568.

8. V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, and J. C. Lacroix. Giant plasmon resonance shift using poly (3, 4-ethylenedioxythiophene) electrochemical switching. Journal of the American Chemical Society, 2010, Vol. 132, No. 30, P. 10224-10226.

9. J. Berthelot, A. Bouhelier, C.J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J.C. Weeber, A. Dereux, S. Kostcheev, H.I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G.P. Wiederrecht. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano letters, 2009, Vol. 9, No. 11, P. 3914-3921.

10. W. Dickson, G.A. Wurtz, P.R. Evans, R.J. Pollard, A.V. Zayats. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Letters, 2008, Vol. 8, No. 1, P. 281-286.

11. Z. Yang, C. Ko, S. Ramanathan. Oxide electronics utilizing ultrafast metal-insulator transitions. Annual Review of Materials Research, 2011, Vol. 14, P. 337-367.

12. S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, H. Liu. Critical behavior and size effects in light-induced transition of nanostructured VO2 films. Physical Review B, 2010, Vol. 82, No. 20, P. 205425.

13. Chen C., Wang R., Shang L., and Guo. Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections. Applied Physics Letters, 2008, Vol. 93, No. 17, 171101.

14. Rini M., Cavalleri A., Schoenlein R. W., López R., Feldman L. C., Haglund R. F. Jr., Boatner L. A., and Haynes T. E. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. Optics Letters, 2005, Vol. 30, No. 5, P. 558-560.

15. Lysenko S., Rua A. J., Vikhnin V. Jimenez J., Fernandez F., Liu H. Light-induced ultrafast phase transitions in VO2 thin film. Applied Surface Science, 2006, Vol. 252, No. 15, P. 5512-5515.

16. Guo H., Chen K., Y. Oh, Kevin Wang, Dejoie C., Syed Asif S.A., Warren O.L., Shan Z. W., Wu J., Minor A. M. Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Letters, 2011, Vol. 11, No. 8, P. 3207-3213.

17. Cavalleri A., Tóth C., Siders C.W., Squier J.A., Ráksi F., Forget P. Kieffer J.C. Femtosecond structural dynamics in VO 2 during an ultrafast solid-solid phase transition. Physical Review Letters, 2001, Vol. 87, No. 23, P. 237401.

18. Ilyinskiy A.B., Kvashenkina O.E., Shadrin E.B. Phase transition and correlation effects in vanadium dioxide.  Semiconductors, 2012, Vol. 46, No. 4, 2012, P. 422–429.

19. Stefanovich G., Pergament A., Stefanovich D. Electrical switching and Mott transition in VO2. Journal of Physics: Condensed Matter, 2000, Vol. 12, No. 41, P. 8837.

20. Zhou Y., Chen X., Ko C., Yang Z., Mouli C., Ramanathan S. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Letters, 2013, Vol. 34, No. 2, P. 220-222.

21.  C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R.F. Haglund, Jr., A. Leitenstorfer. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Physical Review Letters, 2007, Vol. 99, No. 11, 2007, 116401.

22. J. Yoon, H. Kim, X. Chen, N. Tamura, B. Simon Mun, Ch. Park, and H. Ju. Controlling the temperature and speed of the phase transition of VO2 microcrystals. ACS applied materials & interfaces, 2016, Vol. 8, No. 3, P. 2280-2286.

23. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund. Size effects in the structural phase transition of VO2 nanoparticles. Physical Review B. 2002, Vol. 65, No. 22, P. 224113.

24. Liu H., Lu J., Zheng M., Tang S. H., Sow Ch. H., Zhang X., and Ke L. Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires.   Optics express, 2014, Vol. 22, No. 25, P. 30748-30755.

25. E.U. Donev, J.I. Ziegler, R.F. Haglund, L.C. Feldman. Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering. Journal of optics A: pure and applied optics. 2009, Vol. 11, No, 12, P. 125002.

26. Appavoo K., Haglund Jr R. F. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano letters. 2011, Vol. 11, No. 3, P. 1025-1031.

27. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, B. J. Siwick. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science. 2014, Vol. 346, No. 6208, P. 445-448.

28. D. Wegkamp, M. Herzog, Lede X., M.Gatti, P. Cudazzo, Christina L. McGahan, Robert E. Marvel, Richard F. Haglund Jr., A. Rubio, Martin. Wolf, J. Stähler. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. Physical review letters. 2014, Vol. 113, No. 21, P. 216401.

29. M. Liu, Harold Y. Hwang, H. Tao, Andrew C. Strikwerda, K. Fan, George R. Keiser, Aaron J. Sternbach, Kevin G. West, S. Kittiwatanakul, Jiwei Lu, Stuart A. Wolf, Fiorenzo G. Omenetto, X. Zhang, Keith A. Nelson, Richard D. Averitt. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 2012, Vol. 487, No. 7407, P. 345.

30. Kovneristy Yu.K., Lazareva I.Yu., Ravaev A.A. Materialy, pogloshchayushchiye SVCH-izlucheniya [Materials absorbing microwave radiation], Moscow, Nauka Publ., 1982, 164 pages. (In Russian).

31. Gorelov B.M., Konin K.P., Koval V.V., Ogenko V.M. A change in the microwave radiation reflection upon a dielectric–metal transition in Vanadium Dioxide.  Technical Physics Letters, 2001, Vol. 27, No. 2, P. 157–159.

32. Beeson S., Dickens J., Neuber A. A high power microwave triggered RF opening switch. Review of Scientific Instruments. 2015, Vol. 86, No. 3, P. 034704.

33. F. Dumas-Bouchiat, C. Champeaux, and A. Catherinot. RF-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition. Applied Physics Letters. 2007, Vol. 91, No. 22, P. 223505.

34. J. Givernaud, A. Crunteanu, J.-C. Orlianges, A. Pothier, Ñ. Champeaux, A. Catherinot, P. Blondy. Microwave power limiting devices based on the semiconductor–metal transition in vanadium–dioxide thin films. IEEE Transactions on Microwave Theory and Techniques. 2010, Vol. 58, No. 9, P. 2352-2361.

35. K.C. Pan, W. Wang, E. Shin, K. Freeman, G. Subramanyam. Vanadium oxide thin-film variable resistor-based RF switches. IEEE Transactions on Electron Devices. 2015, Vol. 62, No. 9, P. 2959-2965.

36. Jordan T. S., Scott S., Leonhardt D., Custer J. O., Rodenbeck C. T., Wolfley S., Nordquist C. D. Model and Characterization of VO2 Thin-Film Switching Devices. IEEE Transactions on Electron Devices, 2014, Vol. 61, No. 3, P. 813-819.

37. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Optics express, 2009, Vol. 17, No. 20, P. 18330-18339.

38. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Applied Physics Letters, 2008, Vol. 93, No. 2, P. 024101.

39. Appavoo K., Haglund Jr R. F. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano letters, 2011, Vol. 11, No. 3, P. 1025-1031.

40. A. Crunteanu, G. Humbert, J. Leroy, L. Huitema, J.-C. Orlianges, A. Bessaudou. Tunable THz metamaterials based on phase-changed materials VO2 triggered by thermal and electrical stimuli. Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X. – International Society for Optics and Photonics, 2017, Vol. 10103, P. 101031H.

41. H. Liu, J. Lu, X.R. Wang. Metamaterials based on the phase transition of VO2. Nanotechnology, 2017, Vol. 29, No. 2, P. 024002.

42. J. Leroy, G. Humbert, J.-C. Orlianges, C. Champeaux, P. Blondy, A. Crunteanu. Tunable Terahertz metamaterials based on hybrid integration of the VO2 metal-insulator transition material. Proc. of The 8th International Conference on Advanced Materials, ROCAM 2015.

43. H. Kim, N. Charipar, E. Breckenfeld, A. Rosenberg, A. Piquéa. Active terahertz metamaterials based on the phase transition of VO2 thin films. Thin Solid Films, 2015, Vol. 596, P. 45-50.

44. Shin J. H., Park K. H., Ryu H. C. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film. Nanotechnology, 2016, Vol. 27, No. 19, P. 195202.

45. G. Zhang, H. Ma, C. Lan, R. Gao, J. Zhou. Microwave Tunable Metamaterial Based on Semiconductor-to-Metal Phase Transition. Scientific Reports, 2017, Vol. 7, No. 1, P. 5773.

46. Zheng X., Xiao Z., Ling X. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 2018, Vol. 13, No. 1, P. 287-291.

47. X. Wen, Q. Zhang, J. Chai, L. M. Wong, Sh. Wang, and Q. Xiong. Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering. Optics express, 2014, Vol. 22, No. 3, P. 2989-2995.

48. Z. J. Thompson, A. Stickel, Y.-G. Jeong, S. Han, B. H. Son, M. J. Paul, B. Lee, A. Mousavian, G. Seo, H.-T. Kim, Y.-S. Lee, D.-S. Kim. Terahertz-triggered phase transition and hysteresis narrowing in a nanoantenna patterned vanadium dioxide film. Nano letters, 2015, Vol. 15, No. 9, P. 5893-5898.

49. Ch. Han, Edward P. J. Parrott, G. Humbert, A. Crunteanu, E. Pickwell-MacPherson. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices. Scientific reports. 2017, Vol. 7, No. 1, P. 12725.

50. Y.-G. Jeong, J.-S. Kyoung, J.-W. Choi, S.-H. Han, H.-R. Park, N. Park B.-J. Kim, H.-T. Kim, H.-S. Kim, D.-S. Kim. Terahertz nano antenna enabled early transition in VO2. arXiv preprint arXiv:1208.3269, 2012.

51. Sakai J. High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance. Journal of Applied Physics. 2008, Vol. 103, No. 10, P. 103708.

52. Lee Y. W., Kim B.-J., Lim J.-W., Yun S. J., Choi S., Chae B.-G., Kim G., and Kim H.-T. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Applied Physics Letters, 2008, Vol. 92, No. 16, P. 162903.

53. Y. Zhao, J. H. Lee, Y. Zhu, M. Nazari, Ch. Chen, H. Wang, A. Bernussi, M. Holtz, and Zh. Fan. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. Journal of Applied Physics. 2012, Vol. 111, No. 5, P. 053533.

54. Chen Z., Wen Q.-Y., Dong K. Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films.  Chin. Phys. Lett., 2013, Vol. 30, P. 1–4.

55. T. L. Cocker, L. V. Titova, S. Fourmaux, H. -C. Bandulet, D. Brassard, J. -C. Kieffer, M. A. El Khakani, and F. A. Hegmann. Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film. Applied Physics Letters. 2010, Vol. 97, No. 22, 221905.

56. J. S. Kyounga, S. B. Choib, H. S. Kima, B. J. Kimc, Y. H. Ahnd, H. T. Kimc, D. S. Kim. Nanoresonator Enabled Ultrafast Alloptical Terahertz Switching Based on Vanadium Dioxide Thin Film. AIP Conference Proceedings, 2011, Vol. 1399, No. 1, P. 1027-1028.

57. Jeong Y., Bernien H., Kim D., et al. Electrical switching of terahertz radiation on vanadium dioxide thin film fabricated with nano antennas. AIP Confer. Proc., 2011, Vol. 1399, P. 967–968.

58. Y.-G. Jeong, H. Bernien, J.-S. Kyoung, H.-R. Park, H.-S. Kim, J.-W. Choi, B.-J. Kim, H.-T. Kim, K.J. Ahn, D.-S. Kim. Electrical control of terahertz nano antennas on VO2 thin film. Opt. Expr., 2011, Vol. 19, No. 22, P. 21211 -21215.

59. M. Seo, J. Kyoung, H. Park, S. Koo, H. Kim, H. Bernien, B.J. Kim, J.H. Choe, Y.H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. Kim. Active Terahertz Nanoantennas Based on VO2 Phase Transition. Nano Lett., 2010, Vol. 10, P. 2064 –2068.

60. Ch. Chen, Ya. Zhu, Y. Zhao, J. H. Lee, H. Wang, A. Bernussi, M. Holtz, and Zh. Fan. VO2 multidomain heteroepitaxial growth and terahertz transmission modulation.  Applied Physics Letters, 2010, Vol. 97, No. 21, P. 211905.

61. Q. Shi, W. Huang, J. Wu, Y. Zhang, Y. Xu, Y. Zhang, Sh. Qiao, and J. Yan. Terahertz transmission characteristics across the phase transition in VO2 films deposited on Si, sapphire, and SiO2 substrates. Journal of Applied Physics, 2012, Vol. 112, No. 3, P. 033523.

62. T.L. Cocker, L.V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C. Kieffer, M.A. El Khakani, F. A. Hegmann. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Physical Review B, 2012, Vol. 85, No. 15, P. 155120.

63.Y. Xu, W. Huang, Q. Shi, Y. Zhang, Y. Zhang, L. Song, Y. Zhang. Effects of porous nano-structure on the metal–insulator transition in VO2 films Applied Surface Science, 2012, Vol. 259, P. 256-260.

64. Zhan H., Astley V., Hvasta M. The metal-insulator transition in VO2 studied using terahertz apertureless near-field microscopy. Applied Physics Letters. 2007, Vol. 91, No. 16, P. 162110.

65. Andreev V.N., Kapralova V.M., Klimov V.A. Effect of hydrogenation on the metal-semiconductor phase transition in vanadium dioxide thin films. Physics of the Solid State. 2007, Vol. 49, No. 12, P. 2318-2322.

66. S. A. Pauli, R. Herger, and P. R. Willmott. X-ray diffraction studies of the growth of vanadium dioxide nanoparticles. Journal of Applied Physics. 2007, Vol. 102, No. 7, P. 073527.

67. A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein. Evidence for a structurally-driven insulator-to-metal transition in VO 2: A view from the ultrafast timescale. Physical Review B. 2004, Vol. 70, No. 16, P. 161102.

68. Chen C., Wang R., Shang L., Guo C. Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections. Applied Physics Letters. 2008, Vol. 93, No. 17, P. 171101.

69. Semenov A.L. Time of a semiconductor-metal phase transition induced by an ultrashort light pulse in vanadium dioxide. Physics of the Solid State, 2007, Vol. 49, No. 6, P. 1157-1160.

70. C. Chen, Y. Zhu, Y. Zhao, J.H. Lee, H. Wang, A. Bernussi, M. Holtz, Z. Fan. VO2 multidomain heteroepitaxial growth and terahertz transmission modulation. Appl. Phys. Lett., 2019, Vol. 97, P. 211905.

71. Ch. Chen, Y. Zhu, Y. Zhao, J. H. Lee, H. Wang, A. Bernussi, M. Holtz, Zh. Fan. VO2 multidomain heteroepitaxial growth and terahertz transmission modulation. Applied Physics Letters, 2010, Vol. 97, No. 21, P. 211905.

71. Balu R., Ashirt P.V. Near-zero IR transmission in the metal-insulator transition of VO2 thin films.  Appl. Phys. Lett., 2008, Vol. 92, P. 021904.

72. Ruzmetov D., Zawilski K.T., Narayanamurti V. Structure-functional property relationships in rf-sputtered vanadium dioxide thin films. Journal of Applied Physics, 2007, Vol. 102, No. 11, P. 113715.

73. I. Bychkov, D. Kuzmin, D. Kalenov, A. Kamantsev, V. Koledov, D. Kuchin, V. Shavrov. Electromagnetic waves generation in Ni2.14Mn0.81GaFe0.05 Heusler alloy at structural phase transition. Acta Physica Polonica A, 2015, Vol. 127, No. 2, P. 588-590.

74. I.V. Bychkov, V.A. Golunov, D.S. Kalenov, A.P. Kamantsev, D.S. Kuchin, V.V. Koledov, D.A. Kuzmin, V.V. Meriacri, S.V. von Gratowski, M.P. Parkhomenko, A.V. Mashirov, V.G. Shavrov. The intrinsic radiation and electromagnetic wave reflection coefficient in the range of 8 mm of Ni2,14Mn0,81GaFe0,05 and Ti-Ni alloys in the temperature interval near the phase transitions of the 1st and 2nd order. Zhurnal Radioelektroniki - Journal of Radioelectronics. 2014, No. 12, Available at  http://jre.cplire.ru/jre/dec14/27/abstract_e.html

75. Sarafis P., Nassiopoulou A. G. Dielectric properties of porous silicon for use as a substrate for the on-chip integration of millimeter-wave devices in the frequency range 140 to 210 GHz. Nanoscale research letters, 2014, Vol. 9, No. 1, P. 418.

76. Peterseim T., Dressel M., Dietrich M., Polity A. Optical properties of VO2 films at the phase transition: Influence of substrate and electronic correlations. Journal of Applied Physics, 2016, Vol. 120, No. 7, P. 075102.

77. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, B. J. Siwick. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science, 2014, Vol. 346, No. 6208, P. 445-448.

78. D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, Jr., A. Rubio, M. Wolf, J. Stähler. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. Physical review letters, 2014, Vol. 113, No. 21, P. 216401.

79. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, Aaron J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R, D. Averitt. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 2012, Vol. 487, No. 7407, P. 345.

80. S. Kumar, F. Maury, N. Bahlawane. Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings. Scientific Reports, 2016, Vol. 6, P. 37699.

81. H.W. Verleur, A.S. Barker Jr, C.N. Berglund. Optical properties of VO2 between 0.25 and 5 eV. Phys. Rev., 1968, Vol. 172, No. 3, P. 788-798.

82. M. Currie, M.A. Mastro, V.D. Wheeler. Characterizing the tunable refractive index of vanadium dioxide. Optical Materials Express, 2017, Vol. 7, No. 5, P. 1697-1707.

83. C.F. Bohren, D.R. Huffman. Absorption and scattering of light by small particles. John-Wiley & Sons. 2008.

84. S.A. Maier. Plasmonics: Fundamentals and applications. Springer. 2007.

85. K.L. Kelly, E. Coronado, L.L. Zhao.  The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.  J. Phys. Chem. B. 2003, Vol. 107, No. 3, P. 668-677.

86. R. H. Doremus. Optical properties of small silver particles.  J. Chem. Phys. 1965, Vol. 42, No. 1, P. 414-417.

 

For citation:

V.V.Koledov, V.G.Shavrov, N.V.Shahmirzadi, T.Pakizeh, A.P.Kamantsev, D.S.Kalenov, M.P.Parkhomenko, S.V. von Gratowski, A.V.Irzhak, V.M.Serdyuk, J.A Titovitsky, A.A.Komlev, A.E Komlev, D.A.Kuzmin, I.V.Bychkov. The interaction of electromagnetic waves with VO2 nanosized spheres and films in optical and extremely high frequency range. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 2. Available at http://jre.cplire.ru/jre/feb18/13/text.pdf

DOI  10.30898/1684-1719.2018.2.13