"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2018

contents of issue      DOI  10.30898/1684-1719.2018.2.6       full text in Russian (pdf)   

TEM - WAVEGUIDE ON THE BASIS OF THE ARTIFICIAL MAGNETIC CONDUCTOR OF CAPACITIVE GRAITINGS

O. A. D’yakonova, Yu. N. Kazantsev
Fryazinio Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia 

 

The paper is received on February 15, 2018

 

Abstract. A new realization of a TEM-waveguide based on an artificial magnetic conductor made of periodic grids of capacitive type is proposed The paper considers a rectangular TEM-waveguide, in which two “narrow” walls are made of artificial magnetic conductor on the basis of two gratings made of metal elements of square shape. Simple expressions are obtained to calculate the structure of the electromagnetic field in such a waveguide. As a calculation model, a TEM-waveguide with an internal cavity size of 16x24 mm2 (a=16mm, B =24mm) is taken. The approximate boundary conditions on the artificial magnetic conductor surface were used to calculate the main characteristics of the TEM-waveguide (transverse wave number, constant propagation, field distribution). The transmission frequency bands is evaluated in the case of a TEM-waveguide excited by a quasiuniform field. It is shown that near the resonant frequency of the artificial magnetic conductor the structure of the field in the internal cavity of the waveguide is close to the field of the TEM-wave. It is experimentally confirmed that the passage band of the TEM-waveguide is determined by the value of the operating band of the artificial magnetic conductor.

Key words: artificial magnetic conductor, periodic gratings of capacitive type, electromagnetic field structure, TEM -wave, resonant frequency.

References

1.     D. Sievenpiper,  L. Zhang, R. J. Broas, N. G. Alexopolous, E.Yablonovitch. High-Impedance electromagnetic  surfaces with a forbidden frequency band,  IEEE Transactions on microwave theory and techniques,  Vol.47, No. 11, pp. 2059-2074, Nov. 1999.

2.     D.J. Kern,  D.H. Werner, A. Monorchio, L.Lanuzza, M.J. Wilhelm. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces, IEEE Transactions on antennas and propagation,  Vol.53, No. 1, pp. 8-16, 2005.

3.     Yu.N. Kazantsev, V.N.Apletalin. Artificial magnetic conductors based on capacitive gratings, Journal of Communications Technology and Electronics, Vol. 52, No.4, pp. 390-398, 2007.

4.     V. N. Apletalin, Yu. N. Kazantsev, and A. D. Shatrov. Thin screens that exhibit the properties of a magnetic wall and are based on small-period gratings of Helmholtz resonators, Journal of Communications Technology and Electronics, Vol. 54, No. 3, pp. 279-285, 2009.

5.     C.R.Simovski, P. de Maagt, S.A. Tretyakov, M. Paquay, A.A.Sochava. Angular stabilization of resonant frequency of artificial magnetic conductors for TE-incidence, Elecrtronics letters, Vol.40, No. 2, pp. 92-93, 22nd January 2004.

6.     R.F.J. Broas,  D. Sievenpiper, E.Yablonovitch. High-impedance ground plane applied to a cellphone handset geometry, IEEE Transactions on microwave theory and techniques, Vol.49, No. 7, pp. 1262-1265, July 2001.

7.     R. Coccioli,  F-R. Yang, K-P Ma, T. Itoh. Aperture-coupled patch antenna on UC-PBG substrate, IEEE Transactions on microwave theory and techniques,  Vol.47, No. 11, pp. 2123-2129, Nov. 1999.

8.     F. Yang and Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Transactions on antennas and propagation, Vol.51, No. 10, pp. 2691-2703, Oct. 2003.

9.     Y. Zhang, J.von Hagen, M. Younis, C. Fischer, W. Wiesbeck. Planar artificial magnetic conductors and patch antennas, IEEE Transactions on antennas and propagation, Vol.51, No. 10, pp. 2704-2711, Oct. 2003.

10. R.F.J. Broas,  D. Sievenpiper, E.Yablonovitch. An applications of high-impedance  ground planes to phased array antennas, IEEE Transactions on antennas and propagation, Vol.53, No. 4, pp. 1377-1381, April 2005.

11.  A.Erentok, P.L.Luljak, R.W. Ziolkowski. Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications, IEEE Transactions on antennas and propagation, Vol.53, No. 1, pp. 160-172, January 2005.

12.  A.P. Feresidis, G. Goussetis, S. Wang, C. Vardaxoglou. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas, IEEE Transactions on antennas and propagation, Vol.53, No. 1, pp. 209-215, January 2005.

13. Yu. N. Kazantsev, V. I. Apletalin, and V. S. Solosin. Minishields of electromagnetic radiation, Journal of Communications Technology and Electronics, Vol. 53, No. 3, pp. 295-299, 2008.

14.  Yu. N. Kazantsev, V. I. Apletalin, and V. S. Solosin. Implementation of electromagnetic minishields at frequencies of 0.9, 1.8, and 2.4 GHz, Journal of Communications Technology and Electronics, Vol. 53, No. 8, pp. 895-898, 2008.

15.  Yu. N. Kazantsev, V.S. Solosin.  Radar cross section and surface impedance of a resonator with properties of an artificial magnetic conductor,  Journal of Communications Technology and Electronics, Vol. 59, No. 12, pp. 1349-1355, 2014.

16.  Yu. N. Kazantsev, V. I. Apletalin, V.A. Kaloshin. Electromagnetic shield with large surface impedance, the patent for the invention RUS 2379800 25.07.2007. (In Russian)

17. N. Engheta. Thin absorbing screens using metamaterial surfaces, IEEE Transactions on antennas and propagation, Vol.2, pp. 392-395, January 2002.

18.  F-R. Yang, K-P Ma, Y. Qian, T. Itoh. A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure, IEEE Transactions on microwave theory and techniques, Vol.47, No. 11, pp. 2092-2098, Nov. 1999.

19.  M. Kim, J.B. Hacker, A.L.Sailer, S. Kim, D. Sievenpiper and J.A.Higgins. A rectangular TEM waveguide with photonic crystal Walls for Excitation of quasi-optical amplifiers, IEEE MTT –S Microwave Symp. Dig., Anaheim, CA. pp. 543-546, June 13-19 1999.

20.  O. A. D’yakonova, D. S. Kalenov, Yu. N. Kazantsev. Automated measuring system based on the set of scalar network analyzers, Zhurnal Radioelektroniki – Journal of Radio Electronics, no.10, 2016. 

Available at http://jre.cplire.ru/jre/oct16/7/text.pdf (In Russian)                

 

For citation:

O. A. D’yakonova, Yu. N. Kazantsev. TEM-Waveguide on the basis of the artificial magnetic conductor of capacitive gratings. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 2. Available at http://jre.cplire.ru/jre/feb18/9/text.pdf
DOI  10.30898/1684-1719.2018.2.6