"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2019

contents of issue      DOI  10.30898/1684-1719.2019.2.1     full text in Russian (pdf)  

Generalization of electrostatic formulas for the case of harmonically varying values: the impedance of a long-wave dipole antenna in a conducting medium


V. A. Vdovin 1, P. S. Glazunov2, A .I. Slepkov2

1 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya,  11-7, Moscow, 125009, Russia

2 Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, MSU, bldg. 1, str. 2 Moscow 119991, Russia


The paper is received on October 19, 2018,  after correction - on January 23, 2019


Abstract. As a rule, the source of electromagnetic waves radiation is located in vacuum or dielectric medium. Nevertheless the problems of electromagnetic waves radiation in isotropic medium with arbitrary electrodynamic characteristics (conductivity, electric and magnetic permeability) are of great practical interest. There are many examples of such practical problems: mineral ores disintegration and nanoparticles decapsulation by electromagnetic pulses, volume and surface plasmon excitation, the problem of underwater radio communication, nearfield microwave microscopy and etc. A lot of scientific literature devoted to these specific issues can be found. However, there is not enough information on the generalization of the theories used to solve such practical problems. The purpose of this article is to make a methodical generalization, clarify current terminology and thus to form theoretical groundwork for solving issues of this type. A generalization of the formulas for the impedance of a long-wavelength dipole antenna when it is in a conducting medium is considered as an example. Particular attention is paid to the effect of shielding the charges of the radiator by conduction charges of the medium.

Key words: conducting media, electromagnetic waves radiation, electromagnetic waves propagation, isotropic media with arbitrary electrodynamic characteristics, Maxwell’s equations. 


  1. Sommerfeld A. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie.  Annalen der Physik. 1909, Vol. 333, No. 4, pp. 665-736.

  2. Sommerfeld A. Vorlesungen über theoretische physic band VI, Partielle differentialgleichungen der Physik. Leipzig, 1948, 457 p.

  3.  Glazunov P. S.,  Vdovin V. A.,  Slepkov A. I.  Thermal effects of electromagnetic radiation on the conductive particles integrated into the dielectric medium. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 7. Available at    http://jre.cplire.ru/jre/jul16/1/text.pdf  (In Russian)

  4. Chanturiya V. A.  & etc. Use of High-Power Electromagnetic Pulses in Processes of Disintegration and Opening of Rebellious Gold-Containing Raw Material. Journal of Mining Science, 2001, No 4, pp. 95-106.

  5. Bunin I. Zh. Theory and practice of using combined physicochemical and energy effects on geomaterials and water suspensions. Fiziko-tekhnicheskie problemy obogascheniya poleznykh iskopaemykh – Physical and Technical problems of minerals enriching, 2017, No. 11, pp. 77-83. Available at http://rudmet.net/media/articles/Article_MJ_11_17_pp.77-83_1.pdf  (In Russian).

  6. Kioresku A.V. Mekhanizmy vozdejstviya mikrovolnovogo izlucheniya na processy vyshchelachivaniya mineral'nogo syr'ya [ Mechanisms of influence of microwave radiation on leaching processes]. Gornyj informacionno-analiticheskij byulleten (nauchno-tekhnicheskij zhurnal) – Mining informational and technical bulletin (scientific journal), 2015. Available at    https://cyberleninka.ru/article/n/mehanizmy-vozdeystviya-mikrovolnovogo-izlucheniya-na-protsessy-vyschelachivaniya-mineralnogo-syrya  (In Russian)

  7. Krymskij V.V., Mingazheva Yu.G. The impact of nanosecond electromagnetic pulses on sulfide ore. Sbornik trudov konferencii tomskogo politekhnicheskogo universiteta. [Proceedings of the conference of the Tomsk Polytechnic University], 2017, pp. 396-398. Available at http://earchive.tpu.ru/bitstream/11683/45085/1/conference_tpu-2017-C11_V2_p396-398.pdf   (In Russian)

  8. Vdovin V.A., Gulyaev Yu.V., Chanturiya V.A., Cherepenin V.A. – Nonthermal Action of High-Powered Electromagnetic Pulses on Gold-Bearing Rock. Journal of Communications Technology and Electronics, 2005, Vol. 50, No.9, pp. 1044-1047.

  9.  Chanturia V.A., Bunin I.Zh., Riazantseva M.V., Habarova I.A. Studying of changes in composition and chemical condition of chalcopyrite and sphalerite surface atoms before and after nanosecond electromagnetic pulses treatment by the method of X-ray photoelectronic spectroscopy. Fiziko-tekhnicheskie problemy obogashcheniya poleznyh iskopaemyh.- Physial and Technical Problems of mineral enriching, 2013, No 3. pp. 157-168. Available at http://www.sibran.ru/upload/iblock/0f3/0f3778d8ad1138bad23ef5d1f2da1ced.pdf  (In Russian)

  10. Gulyaev Yu.V. et al. Pulsed electric field-induced remote decapsulation of nanocomposite liposomes with implanted conducting nanoparticles. Journal of Communications Technology and Electronics, 2015, Vol. 60. No. 10. pp. 1051-1063. Available at https://istina.msu.ru/download/11969338/1evFVI:u6p5sO6F4mfxwx0qP2wemURrDkQ/ (In Russian)

  11. Gulyaev Yu.V. et al. The influence of gold nanorods on the activation of liposomal capsules by means of ultrashort electrical pulses. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 11. Available at http://jre.cplire.ru/jre/nov16/7/text.pdf (In Russian)

  12. Gulyaev Yu.V. et al. Microwave pulse remote activation of polyelectrolyte nanocomposite microcapsules. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2014, No12. Available at  http://jre.cplire.ru/mac/dec14/25/text.pdf (In Russian)

  13. Gulyaev Yu.V. et al. External pulsed electric field remote activation of nanocomposite microcapsules formed from the lipids, polymers and conductive nanoparticles. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2014, N11. Available at  http://jre.cplire.ru/jre/nov14/9/text.pdf (In Russian)

  14. Stefan A. Maier. Plasmonics: fundamentals and applications. Centre for Photonics and Photonic Materials. Department of Physics, University of Bath, UK, 2007, 223 p.

  15. Shishkov V. Yu., Andrianov E. S., Pukhov A. A., Vinogradov A. P.  Parametric enhancement of SERS by phonons of metallic plasmonic structures. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 11., 108-122 pp. Available at    http://jre.cplire.ru/jre/nov17/11/text.pdf (In Russian)

  16. Shevchenko V. V. Surface electromagnetic waves on the plain boundaries of electroconductive media of high conductivity, Zenneck’s wave. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2013. No. 7. Available at: http://jre.cplire.ru/jre/jul13/7/text.pdf (In Russian)

  17.  Knyazev B. A.  Kuzmin A. V.  Surface electromagnetic waves: from the visible range to microwave. Vestnik NGU- Bulletin of the NSU. 2007, V.2, No.1. Available at http://www.phys.nsu.ru/vestnik/catalogue/2007/01/Vestnik_NSU_07T2V1_p108_p122.pdf (In Russian)

  18. Naznanov V.F. Surface electromagnetic waves of the optical range (plasmon-polaritons): properties, application. Izvestiya Saratovskogo universiteta. Novaya seriya Fizika- News of Saratov University. New series Physics. 2015, V.15, No.1 Available at https://cyberleninka.ru/article/n/poverhnostnye-elektromagnitnye-volny-opticheskogo-diapazona-plazmony-polyaritony-svoystva-primenenie (In Russian)

  19. Gaikovich K.P., Smirnov A.I., Yanin D.V. Methods of near-field resonance microwave diagnostics.  Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 2. Available at: http://jre.cplire.ru/jre/feb17/5/text.pdf (In Russian)

  20. Gaikovich K.P., Maksimovitch Ye.S., Sumin M.I.  Near-field pulse microwave profiling of subsurface dielectric inhomogeneities.  Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 2. Available at: http://jre.cplire.ru/jre/feb17/6/text.pdf (In Russian)

  21. Usanov D.A., Gorbatov S.S., Kvasko V.Yu. Near-field microwave microscope with low-dimension resonator of inductive diaphragm-capacitor diaphragm type. Izvestiya vuzov Rossii. Radioehlektronika- Journal of the Russian Universities: Radioelectronics, 2010, No.2, 66-69. pp. Available at: http://www.eltech.ru/assets/files/university/izdatelstvo/radioelektronika/2010-06.pdf#page=66

  22. Fei Wang etc. Quantitative impedance characterization of sub-10nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope. Nanotechnology, 2014, V.25, No.40 Available at https://www.nanomicrowave.eu/mm_files/do_123/co_26728/Quantitative%20impedance%20characterization.pdf

  23. Korjenevsky A.V., Cherepenin. V.A. Magnetic Induction Tomography.  Zhurnal Radioelektroniki - Journal of Radio Electronics, 1998, No.1. Available at http://jre.cplire.ru/jre/dec98/1/text.html (In Russian).

  24. Korjenevsky A.V. Solving inverse problems in electrical impedance and magnetic induction tomography by artificial neural networks. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2001, No.11. Available at http://jre.cplire.ru/jre/dec01/7/text.html

  25.  Korjenevsky A.V. Non-contact tomography of electrically conductive media by a quasistatic alternating electric field. Journal of Communications Technology and Electronics, 2004, Vol.49, No. 6, 761 p.

  26. Lakeev I.K., Korjenevsky A.V., Tuikin T.S. Software development for the multiprocessor architecture of the personal electrical impedance mammograph PEM. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No.12 Available at http://jre.cplire.ru/jre/dec17/9/text.pdf

  27. Korjenevsky A.V., Sapetskii S.A. Magnetic Induction Tomography for Medical Applications. Almanah klinicheskoj mediciny -Almanac of Clinical Medicine, 2008, No.17-1. Available at:  https://cyberleninka.ru/article/n/magnitoinduktsionnaya-tomografiya-dlya-meditsinskih-prilozheniy

  28. Vainshtein L. A. Teoriia difraktsii. Elektronika SVCH. [The theory of diffraction. Microwave electronics]. Moscow, Radio i Syiaz Publ., 1995. 600 p. (In Russian)

  29. Vainshtein L. A. Elektromagnitnye volny.  [The theory of electromagnetic waves]. Moscow, Radio i Syiaz Publ., 1988, 440 p. (In Russian)

  30. Markov G. T., Chaplin A. F. Vozbuzhdenie elektromagnitnykh voln. [Exaltation of electromagnetic waves]. Radio i Syiaz Publ., 1983, 296 p. (In Russian)

  31. King R., Smith G. Antennas in matter. Fundamentals, theory, and applications. The MIT press, Cambridge, Massachusetts, and Landon, England 1984. 824p .

  32. Feinberg E. L. Rasprostranenie radiovoln vdol zemnoi poverkhnosti. [Propagation of radio waves along the earth's surface]. Moscow. Nauka. Fizmatlit Publ., 1999, 496 p. (In Russian)

  33. Felsen L., Marcuvitz N. Radiation and Scattering of Waves. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973, 556 p.

  34. Denisov V. I. Vvedenie v elektrodinamiku sploshnykh sred: Uchebnoe posobie. [Introduction to an electrodynamics of continuous mediums: Manual]. Moscow. MSU Publ., 1989, 168 p. (In Russian)

  35. L.D. Landau & E.M. Lifshitz Electrodynamics of Continuous Media (Volume 8 of A Course of Theoretical Physics ), Pergamon Press, 1960. 656 p.

  36. Andrushkevich I. E., Zhiznevskii V. A., Shienok Iu.V. About environments classification from the point of view of Maxwell's equations separability. Vestnik Vitebskogo gosudarstvennogo universiteta - Bulletin of the Vitebsk state university, 2005, No 1 (35). p. 112-118.  Available at : https://lib.vsu.by/xmlui/bitstream/handle/123456789/8340/112-118.pdf?sequence=1 (In Russian)

  37.  Sveshnikov A. G., Tikhonov A. N. Teoriia funktsii kompleksnoi peremennoi. [Theory of function of complex variable]. Moscow, Fizmatlit Publ., 2010, 336 p. (In Russian)

  38. John David Jackson. Classical Electrodynamics. Third Edetion. John Wiley & Sons, Inc., 791 p.

  39. Sadovskii I.N. et al. Analiz modelej diehlektricheskoj pronicaemosti vodnoj sredy ispolzuemyh v zadachah distancionnogo zondirovaniya akvatorij. [Analysis of dielectric permittivity models of the aquatic environment used in problems of remote sensing of water areas]. Moscow,  Space Research Institute of the Russian Academy of Sciences, 2013, 60 pp. (In Russian)

  40. Vinogradov A.P. Elektrodinamika kompozitnykh materialov. [Electrodynamics of composite materials]. Moscow, Editorial URSS Publ., 2001, 208 p. (In Russian)

  41. Sveshnikov A. G., Bogoliubov A. N., Kravtsov V. V. Lektsii po matematicheskoi fizike. [Mathematical physics lectures]. Moscow, Nauka. MSU Publ., 2004, 416 p. (In Russian)

  42. A. N. Matveev. Optika [Optics]. Moscow, Mir Publ., 1988,  351 p. (In Russian)

  43. Pistolkors A.A. Anteny [Antennas].  Moscow, State publishing house of literature on communications and radio, 1947, 481 p.  (In Russian)

 For citation:
V. A. Vdovin, P. S. Glazunov, A. I. Slepkov. Generalization of electrostatic formulas for the case of harmonically varying values: the impedance of a long-wave dipole antenna in a conducting
medium. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 2. Available at http://jre.cplire.ru/jre/feb19/1/text.pdf

DOI  10.30898/1684-1719.2019.2.1