"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2019

contents of issue      DOI  10.30898/1684-1719.2019.2.6     full text in Russian (pdf)  

Simulation of high-current relativistic gyrotron on longitudinally slotted cavity TM-mode


M. N. Vilkov1, A. N. Leontyev1, R. M. Rozental1, V. P. Tarakanov2,3 

1 Institute of Applied Physics, Russian Academy of Sciences, 46 Ul'yanov st., 603950, Nizhny Novgorod, Russia

2 Moscow Engineering Physics Institute, 31 Kashirskoe sh., 115409, Moscow, Russia

3 Joint Institute for High Temperatures, Russian Academy of Sciences, 13 Izhorskaya st. Bd.2, 125412, Moscow, Russia


The paper is received on January 30, 2019


Abstract.  Pulse gyrotrons with relativistic helical electron beams, formed by explosive emission cathodes, are promising sources of electromagnetic radiation of the millimeter wavelength range with output power level in the hundreds of megawatts. However, an increase of the working current of the electron beam above a certain value, while maintaining the working cavity mode, leads to a significant decrease of gyrotrone efficiency due to the rebunching of electrons. Thus, the maximum power and maximum efficiency regimes in the gyrotron may not significantly overlap. The solution to this problem can be found in lowering the coupling coefficient of the electron beam with the high-frequency field due to the use of transverse magnetic working mode. In this paper calculation results for the Ka-band high-current relativistic gyrotron on TM-mode are presented. A cavity formed by separate longitudinal metal plates with slots between them was used to discriminate parasitic TE-modes in the gyrotron. It is shown that in a system of this type, compared to the traditional solid cavity, the TM-modes structure remains practically unchanged, while the TE-modes are radiated through the slots. The possibility of selective exciting of the TM51 mode with output power of more than 230 MW in such structure was demonstrated using the PIC-simulation with the 3D KARAT code.

Keywords: gyrotron, millimeter-wave radiation, high-current relativistic electron beams.


1. Dhillon S.S., Vitiello M.S., Linfield E.H. et al. The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys., Vol. 50, No. 4, art.no. 043001, January 2017.

2. Black W.M., Gold S.H., Fliflet A.W., Kirkpatrick D.A., Manheimer W.M., Lee R.C., Granatstein V.L., Hardesty D.L., Kinkead A.K., and Sucy M. Megavolt, multikiloamp Ka band gyrotron oscillator experiment. Phys. of Fluids B: Plasma Phys, 1990, Vol. 2, No. 1.

3. Radack D. J., Ramaswamy K., Destler W.W., and Rodgers J. A fundamental mode, high-power, large-orbit gyrotron using a rectangular interaction region. J. Appl. Phys. 1993, Vol. 73, No. 12.

4. Bratman V.L. & Petelin M.I. Radiophys Quantum Electron, 1975, Vol.18, No. 10, pp 1136–1140, https://doi.org/10.1007/BF01040345

5. Zavolsky N.A., Zapevalov V.E. & Moiseev M.A. Radiophysics and Quantum Electronics, 2001,Vol 44, No. 4, pp. 318–325, https://doi.org/10.1023/A:1010422204317

6. Bratman V.L. Transverse-magnetic modes in CRM-monotron Elektronnaya teknika. Ser. I. Elektronika SVCh, 1974, No. 7, pp. 92-94. (in Russian)

7. Ginzburg N.S. & Nusinovich G.S. Radiophys Quantum Electron, 1979 Vol. 22, No. 6, pp 522–528, https://doi.org/10.1007/BF01081232

8. Bratman V.L.  et al. Relativistic gyrotrons and cyclotron autoresonance masers. Int. J. Electron., 1981, Vol. 51, No. 4, pp. 541-567.

9. Abubakirov E.B. Excitation of transverse magnetic modes and mode selection in relativistic cyclotron-resonance masers. Radiophys Quantum Electron. 1983. Vol 26, No. 4, pp. 492–496. https://doi.org/10.1007/BF01033951

10. Botvinnik I.E., Bratman V.L., Denisov G.G., and Ofitserov M.M. Relativistic Gyrotrons with Highly Selective Resonators for Transverse Magnetic Modes. Sov. Tech. Phys. Lett., 1984. Vol. 10, No. 7, pp. 332-334

11. Kotik I.P., Meriakri V.V., Persikov M.V. and Siviv A.N. Theoretical analysis and some applications of circular waveguides with longitudinal slots. Radioteknika I Elektronika – Journal of Communications Technology and Electronics, 1965, Vol. 10, No. 7, pp. 1226-1232. (in Russian)

12. Bratman V.L., Gubanov V.P., Denisov G.G., Korovin S.D., Polevin S.D., Rostov V.V., Smorgonsky A.V. Relativistic orotrons – powerful sources of coherent millimeter-wave radiation. Sov. Tech Phys. Lett., 1984, Vol. 10, pp. 807-811.

13. Goykhman M.B., Kladukhin V.V., Kladukhin S.V., Kovalev N.F., Kolganov N.G, Khramtsov S.P. Tech. Phys. Lett. 2014 Vol. 40, No. 1, pp 84–86 https://doi.org/10.1134/S1063785014010222

14. Abubakirov E.B., Denisenko A.N., Konyushkov A.P., Osharin I.V., Rozental R.M., Tarakanov V.P.  and Fedotov A.E.. Bull. Russ. Acad. Sci.: Phys., 2018, Vol.  82, No. 48.

15. Vlasov S.N., Zhislin G.M., Orlova I.M. et al. Irregular waveguides as open resonators Radiophys Quantum Electron, 1969 Vol. 8, No. 8, pp. 972–978, https://doi.org/10.1007/BF01031202

16. Zapevalov V.E., Kalynov Y.K., Kuftin A.N. et al. Radiophys Quantum Electron, 1994. Vol. 37, No. 3, pp. 233–236, https://doi.org/10.1007/BF01054033

17. Denisov G.G., Zaitsev N.I., Kuzikov S.V., Plotkin M.E. Enhancement of cavity selectivity in relativistic gyrotrons operated at axisymmetric modes Radiophys Quantum El, 2008, Vol. 51, No. 10, pp. 756–767. https://doi.org/10.1007/s11141-009-9078-2

18. Tarakanov V.P. In the book “Matematicheskoe modelirovanie. Problemy I rezul’taty” [Mathematical Simulation. Problems and Results]. Moscow, Nauka Publ., 2003, p. 456 (In Russian).

19. Tarakanov V. P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. Proc. EPJ Web Conf., 2017, Vol. 149, art.no. 04024.

20. Kalyanasundaram N., Saini J. On small-signal amplification of a TM circular cylindrical wave-guide mode in a gyro-TWT. IET Microwaves, Antennas & Propagation, 2013, Vol. 7, No. 8, pp. 644-655.

21. Chang T.H., Xu K.J. Gain and bandwidth of the TM-mode gyrotron amplifiers. Physics of Plasmas, 2018, Vol. 25, 112109.

22. Jiao C., Luo J. A Gyrotron Backward Wave Oscillator Orperating in the TM11 Mode with Large-Orbit Electron Beam. 2007 IEEE International Vacuum Electronics Conference, Kitakyushu, 2007, pp. 1-2.

23. Sabchevski S., Idehara T. Cyclotron Autoresonance With TE and TM Guided Waves. Int. J. IR&MM Waves, 2005, Vol. 26, No. 5, p. 669-689.

24. Liu B.F., Zhang S.C. Nonlinear Simulation of a Cyclotron Autoresonance Maser (CARM) Operating in a Transverse Magnetic Mode. J. IR MM THz Waves, 2011, Vol. 32, No. 1, pp 8–15.


For citation:

M. N. Vilkov, A. N. Leontyev, R. M. Rozental, V. P. Tarakanov. Simulation of high-current relativistic gyrotron on longitudinally slotted cavity TM-mode. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 2. Available at http://jre.cplire.ru/jre/feb19/6/text.pdf

DOI  10.30898/1684-1719.2019.2.6