Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 2
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.2.5

UDC 621.314.6, 621.396.67

 

Planar antenna arrays with helical elements for terahertz rectenna

 

K. T. C. Vu, G. M. Kazaryan, V. L. Savvin

M.V.Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow, 119991 Russia

 

The paper was received on February 8, 2021

 

Abstract. Implementation of rectennas is a prospective method for electromagnetic radiation to DC conversion in terahertz band and bands of higher frequencies. A signal obtained from a single antenna in practical conditions may not be enough to drive rectenna’s rectifier. That problem is most likely to occur if the rectenna is used as a power source. Therefore the problem of increasing voltage over rectenna’s rectifier is important. One can try to address this problem with the use of antenna arrays. As the operating frequency increases the finite conductance of metals becomes a significant limiting factor. This makes considering minimally spaced arrays a worthwhile task. Such spacing results in tight coupling between elements of the array. As a consequence an analytical study of such structure is very hard. The paper examines the option of planar antenna array’s design with closely spaced helical elements. The array’s characteristics are determined using computer simulation. The maximum absolute value of the electric field strength was calculated at the antenna output gap for each array in the case of a normal incidence of a circularly polarized plane electromagnetic wave. The obtained values of the operating frequencies and the width of the operating frequency bands for the designed arrays are presented, as well as the values of the reflection coefficient in the center of the operating frequency band. The array parameters are optimized to maintain the operating frequency while increasing the number of antenna elements. The possibility of increasing the voltage at the array’s output in proportion to the number of antenna elements is demonstrated.

Key words: electromagnetic waves, terahertz radiation, rectenna, tight couplig, numerical model.

References

1.     Sun Q., He Y., Liu K., Fan S., Parrott E.P.J., Pickwell-MacPherson E. Recent advances in terahertz technology for biomedical applications. Quantitative Imaging in Medicine and Surgery. 2017. Vol.7 No.3. P.345–355. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537133/. https://doi.org/10.21037/qims.2017.06.02

2.     Gibin I.S., Kotlyar P.E.  Terahertz Radiation Detectors. Uspekhi prikladnoi fiziki   [Advances in Applied Physics]. 2018. Vol.6. No. 2. P.117-129 (In Russian)

3.     Wang Y., Zhao Z., Chen Z., Wang L. Characterization of Golay detector for the absolute power measurement of terahertz radiation. 37th International Conference on Infrared, Millimeter, and Terahertz Waves. 23-28 September 2012. P.1-2. DOI: https://doi.org/10.1109/IRMMW-THz.2012.6380076

4.     Brown W.C. The History of Power Transmission by Radio Waves. IEEE Transactions on Microwave Theory and Techniques. 1984. Vol.32. No.9. P.1230-1242. https://doi.org/10.1109/TMTT.1984.1132833

5.     McSpadden J.O., Fan L., Kai C. Design and Experiments of a High-Conversion-Efficiency 5.8-GHz Rectenna. IEEE Transactions on Microwave Theory and Techniques. 1998. Vol.46. No.12. P.2053-2060. https://doi.org/10.1109/22.739282

6.     Glaser P.E. Power from the Sun. Science. 1968. No.162. P.857-886. https://10.1126/science.162.3856.857

7.     Matsumoto H. Microwave Power Transmission from Space and Related Nonlinear Plasma Effects. The Radio Science Bulletin. 1995. No.273. P.11-35. https://doi.org/10.1109/MMW.2002.1145674

8.     Schlesak J.J., Alden A.,  Ohno T.  A microwave powered high altitude platform. IEEE MTT-S International Microwave Symposium Digest. 25-27 May 1988. P.283-286. https://doi.org/10.1109/MWSYM.1988.22031

9.     Matsumoto H. Research on solar power satellites and microwave power transmission in Japan. IEEE Microwave Magazine. 2002. Vol.3. No.4. P.36-45. https://doi.org/10.1109/MMW.2002.1145674

10. Celeste A., Jeanty P., Pignolet G. Case study in Reunion Island. Acta Astronautica. 2004. Vol.54. P.253-258.1. https://doi.org/10.1016/S0094-5765(02)00302-8

11. Bailey R.L. A proposed new concept for a solar-energy converter. J. Eng. Power. 1972. Vol.94. No.2. P.73–77. https://doi.org/10.1115/1.3445660

12. Moddel G., Grover S. Rectenna Solar Cells. 2013. New York,Springer. 399 p.

13. Kazemi H., Shinohara, K., Nagy G. Ha W., Lail B., Grossman E., Zummo G., Folks W., Alda J., Boreman G. First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging. Defense and Security Symposium. 9-13 April 2007. Vol.6542. https://doi.org/10.1117/12.718887

14.  Zhu Z., Joshi S., Moddel G. High Performance Room Temperature Rectenna.  IEEE Journal of Selected Topics in Quantum Electronics. 2014. No.6. Vol.20. P.70-78. https://doi.org/10.1109/JSTQE.2014.2318276

15. Fedorov G., Gayduchenko I., Titova N., Gazaliev A., Moskotin M., Kaurova N., Voronov B., Goltsman G.  Carbon Nanotube Based Schottky Diodes as Uncooled Terahertz Radiation Detectors. Physica Status Solidi B – Basic Solid State Physics. 2017. Vol.255. No.1. P.1700227. https://doi.org/10.1002/pssb.201700227

16. Joshi S., Moddel G. Optical rectenna operation: where Maxwell meets Einstein. Journal of Physics D: Applied Physics. 2016. Vol.49. No.26. P.265602. https://doi.org/10.1088/0022-3727/49/26/265602

17. Donchev E., Pang, J., Gammon P., Centeno A., Xie F., Petrov P., Breeze J.D., Ryan M.P., Riley D.J., Alford N. The rectenna device: From theory to practice (a review). MRS Energy & Sustainability. 2014. Vol.1. E1. https://doi.org/10.1557/mre.2014.6

18. Vu K.T.C., Egorov R.V., Savvin V.L., Mikheev D.A. A Study of Electrodynamic Characteristics of a Spiral Microwave Antenna. Uchenye zapiski fizicheskogo fakul'teta Moskovskogo Universiteta [Proceedings of the Faculty of Physics, Lomonosov Moscow State University]. 2014. Vol.144301. No.4. P.144301-1–144301-3 (In Russian)

19. Vu K.T.C., Egorov R.V., Savvin V.L., Mikheev D.A. Model of a spiral rectenna array with an omnidirectional radiation pattern. Bulletin of the Russian Academy of Sciences: Physics. 2015. Vol.79. No.12. P.1477–1479. https://doi.org/10.3103/S1062873815120242

20. Vu K.T., Kazaryan G.M., Savvin V.L. Processes of Converting Terahertz Radiation into Electric Current. Bulletin of the Russian Academy of Sciences: Physics. 2019. Vol.83. No.1. P.37–39.

     https://doi.org/10.3103/S106287381901026X

21. Gedney S.D. Introduction to the Finite-Difference Time Domain Method for Electromagnetics. Synthesis Lectures on Computational Electromagnetics. 2011. Vol.6 .No.1. P.1-250.

     https://doi.org/10.2200/S00316ED1V01Y201012CEM027

22. Yuan Y. Recent advances in trust region algorithms. Mathematical Programming. 2015. Vol.151. P.249-281. https://doi.org/10.1007/s10107-015-0893-2

 

For citation:

Vu K.T., Kazaryan G.M., Savvin V.L. Planar antenna arrays with helical elements for terahertz rectenna. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.2. https://doi.org/10.30898/1684-1719.2021.2.5  (In Russian)