Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 2

Full text in Russian (pdf)

Russian page


DOI https://doi.org/10.30898/1684-1719.2021.2.6

UDC 621.396.1


Refined method for determining the spatial correlation interval of the fading in a single-beam decameter radio link


V. P. Pashintsev 1, S. A. Koval 2, D. A. Potyagov 2, A. D. Skorik 3, M. A. Senokosov 1

1 North Caucasus Federal University, Pushkina str., 1, Stavropol, 355017 Russia

2 Military Communications Academy named after the Marshal of the Soviet Union S. M. Budenny, Tikhoretsky prosp., 3, Saint Petersburg, 194064 Russia

3 Russian Institute of Powerful Radio Engineering, 11 line V.O. str., 66, Saint Petersburg, 199178 Russia


The paper was received on February 1, 2021, after correction - on February 10, 2021


Abstract. In this article a refined method have been developed for determining the spatial correlation interval for fading in a decameter radio link with one discrete beam (mode), which are caused by wave diffraction on small-scale ionospheric irregularities. A refined dependence of the spatial correlation interval of fading in a single-beam decameter radio line on the parameters of small-scale ionospheric irregularities, the equivalent length of the radio line and the choice of the operating signal frequency through the value of the root-mean-square deviation of fluctuations of the wave phase front at the output of the inhomogeneous ionosphere is obtained. It is shown that under conditions of disturbances (diffuseness) of the ionosphere, as well as the approach of the operating frequency of the radio line to the maximum applicable frequency, when fluctuations of the phase front of the wave at the output of the ionosphere exceed 1.25 radians, the well-known simplified expression for estimating the interval of spatial correlation of fading can be used in a single-beam decameter radio links with an error of no more than 5%.

Key words: decameter radio link, diffuseness, small-scale ionospheric irregularities, fluctuations of the phase front, diffraction, fading, normalized spatial correlation function, spatial correlation interval.


1.      Sarwate V.V. Electromagnetic Fields and Waves. Bohem press. 1993. 457 p.

2.      Yau K.S.B., Coleman C.J., Cervera M.A. Investigation on fading of High Frequency radio signals propagating in the ionosphere - Results from a Jindalee radar experiment. 10th IET International Conference on Ionospheric Radio Systems and Techniques (IRST 2006). 18-21 July 2006.

3.      Grudinskaya G.P. Rasprostraneniye radiovoln. [Propagation of radio waves]. Moscow, Vysshaya shkola Publ. 1975. 280 p. (In Russian).

4.      Stein S., Jones J. Modern Communication Principles. McGraw-Hill Telecommunications. 1967. 382 p.

5.      Andronov I.S., Fink L.M. Peredacha diskretnykh soobshcheniy po parallelnym kanalam. [Transmission of the discrete messages on parallel channels]. Moscow, Sovetskoye Radio Publ. 1971. 408 p. (In Russian)

6.      Buga N.N. Osnovy teorii svyazi i peredachi dannykh. Chast' 2. [Base of the communication theory and data transmission. Part II]. Leningrad, LVIKA Publ. 1970. 707 p. (In Russian)

7.       Kalinin A.I., Cherenkova E.L. Rasprostraneniye radiovoln i rabota radioliniy. [Propagation of Radio Waves and Operation of Radio Links]. Moscow, Svyaz Publ. 1971. 440 p. (In Russian)

8.      Chernov Yu.A. Spetsialnyye voprosy rasprostraneniya radiovoln v setyakh svyazi i radioveshchaniya. [Special questions of propagation of radio waves in communication and broadcasting networks]. Moscow, Tekhnosfera Publ. 2018. 688 p. (In Russian)

9.      Pashintsev V.P., Solchatov M.E., Gahov R.P., Yeremin A.M. Model of a space-time space communication channel. Fizika volnovykh protsessov i radiotekhnicheskiye sistemy [Physics of wave processes and radio engineering systems]. 2003. Vol.6. No.5. P.63-69. (In Russian)

10. Serkov V.P., Slyusarev V.P. Teoriya elektromagnitnogo polya i rasprostraneniye radiovoln. Chast 2. Rasprostraneniye radiovoln. [Electromagnetic field theory and radio wave propagation. Part II. Propagation of radio waves]. Leningrad, VAS Publ. 1973. 255 p. (In Russian)

11. Kolosov M.A., Armand N.A., Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoy svyazi. [Propagation of radio waves in space communications]. Moscow, Svyaz Publ. 1969. 155 p. (In Russian)

12. Ryzhkina T.E., Fedorova L.V. Investigation of the statistical and spectral characteristics of transatmospheric radio signals in the VHF-microwave range. Zhurnal radoelektroniki [Journal of Radio Electronics]. 2001. No.2 Avaible at:  URL: http://jre.cplire.ru/jre/feb01/3/text.html (accessed 29 January 2021) (In Russian).

13. Maslov O.N., Pashincev V.P. Modeli transionosfernyh radiokanalov i pomekhoustojchivost sistem kosmicheskoj svyazi. [Models of transionospheric radio channels and noise stability of systems of space communication]. Samara, PGATI Publ. 2006. 357 p. (In Russian)

14. Pashintsev V.P., Kolosov L.V., Tishkin S.A., Antonov V.V. Application of the phase-screen theory for developing a model of a one-hop decameter communication link. Journal of Communications Technology and Electronics. 1996. Vol.41. No.1. P.16-21.

15. Pashintsev V.P., Kolosov L.V., Tishkin S.A., Smirnov A.A. Influence of the ionosphere on signal detection in space communications systems. Journal of Communications Technology and Electronics. 1999. Vol.44. No.2. P.132-139.

16. Yeh K.C., Liu C.H. Radio wave scintillations in the ionosphere. Proceedings of the Institute of Electrical and Electronic Engineers. 1982. Vol.70. No.4. Р.324-360.

17. Rytov S.M., Kravtsov Yu.N., Tatarskiy V.I. Vvedeniye v statisticheskuyu radiofiziku. Chast 2. [Introduction to Statistical Radiophysics. Part II]. Moscow,  Nauka Publ. 1978. 464 p. (In Russian)

18. Isimaru A. Wave Propagation and Scattering in Random Media. Academic Publ. New York. 1978. 317 p.

19. Pashintsev V.P., Skorik A.D., Koval S.A., Alekseev D.V., Senokosov M.A. Algorithm of calculation of an interval of frequency correlation of the short-wave radio line taking into account sphericity and smallscale not uniformity of an ionosphere. Sistemy upravleniya, svyazi i bezopasnosti [Control, Communication and Security Systems]. 2020. No.2. P.49-72. https://doi.org/10.24411/2410-9916-2020-10203. (In Russian)

20. Pashintsev V.P., Tishkin S.A., Ivannikov A.I., Borovlev I.I. Calculating the fading depth parameter in single-beam decameter radio link. Radioelectronics and Communications Systems. 2001. No.12. P.57-65.

21. Pashintsev V.P., Omelchuk A.V., Koval S.A., Galushko Yu.I. Method of irregularity intensity value determination according to ionosphere sounding. Dvoinye Tehnologii [Dual technology]. 2009. No.1. P.38-42. (In Russian)

22. Kirillov N.E. Pomekhoustoychivaya peredacha soobshcheniy po lineynym kanalam so sluchayno izmenyayushchimisya parametrami. [Noise-immune transmission of messages over linear channels with randomly changing parameters]. Moscow, Svyaz Publ. 1971. 256 p. (In Russian)

23. Davies K. Ionospheric radio wawes. Blaisdell Publishing Co., 1969. 477 p.

24. Pashintsev V.P., Tishkin S.A., Smirnov A.A., Borovlev I.I. Equivalent way of distribution of a decameter wave in a spherically layered ionosphere. Zhurnal radioelektroniki  [Journal of Radio Electronics]. 2001. No.8. Avaible at: http://jre.cplire.ru/jre/aug01/1/text.html (accessed 29 January 2021) (In Russian)

25. Khmelnitsky E.A. Otsenka real'noy pomekhozashchishchennosti priyema signalov v KV diapazone. [Assessment of the real noise immunity of receiving signals in the HF range.] Moscow, Svyaz Publ. 1975. 232 p. (In Russian)


For citation:

Pashintsev V.P., Koval S.A., Potyagov D.A., Skorik A.D., Senokosov M.A. Refined method for determining the spatial correlation interval of the fading in a single-beam decameter radio link. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.2. https://doi.org/10.30898/1684-1719.2021.2.6  (In Russian)