Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 2
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.2.9

UDC 621.396

 

Miniaturization of Quadrature Stub Directional Couplers

 

D. A. Letavin

Ural Federal University named after the first President of Russia B.N.Yeltsin, Mira str., 32, Yekaterinburg 620002, Russia

 

The paper was received on January 14, 2021, after correction - on February 10, 2021

 

Abstract. The method of designing stub quadrature couplers with reduced dimensions relative to the standard design is considered. This technique is based on replacing quarter-wave sections of a microstrip transmission line (MTL) with low-pass filters (LPF), with equivalent frequency characteristics in the vicinity of the central frequency of the device. In addition, the circuit and design implementations of compact couplers with a controlled operating frequency and different wave impedances of the supply lines of the coupler are considered.

Key words: microwave filter, microstrip line, miniaturization, branch-line coupler.

References

1. Chiang Y.-C., Chen C.-Y. Design of a Wide-Band Lumped-Element 3- dB Quadrature Coupler. IEEE Transactions on Microwave Theory and Techniques. 2001. Vol.49. No.3. P.476-479. https://doi.org/10.1109/22.910551

2. Yu X., Sun S. Design of RF/Microwave Planar Crossovers Using Pure-Series-Connected Lumped Elements. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, CA. 2017. P.2231-2232. https://doi.org/10.1109/APUSNCURSINRSM.2017.8073158

3. Wang H., Liu X., Cai W., Cao H. Design and Realization of a New Compact Branch-line Coupler Using Defected Ground Structure. 2008 9th International Conference on Solid-State and Integrated-Circuit Technology. 2008. https://doi.org/10.1109/ICSICT.2008.4734818

4. Chung D.-H. Design of HTS 3 dB Hybrid Coupler Using Lumped Elements for Radio Astronomy. IEEE Transactions on Applied Superconductivity. 2013. Vol.23. No.3. P.1501904. https://doi.org/10.1109/TASC.2013.2245492

5. Barik R.K., Kumar K.W.P., Karthikeyan S.S. Compact Wideband 3dB Branch Line Coupler with Multiple Symmetric PI Section. 2015 European Microwave Conference (EuMC). 2015. https://doi.org/10.1109/EuMC.2015.7345753

6. Eccleston K.W., Ong S.H.M. Compact Planar Microstripline Branch-Line and Rat-Race Couplers. IEEE Transactions on Microwave Theory and Techniques. 2003. Vol.51. No.10. P.2119-2125. https://doi.org/10.1109/TMTT.2003.817442

7. Liao S.-S., Peng J.-T. Compact Planar Microstrip Branch-Line Couplers Using the Quasi-Lumped Elements Approach With Nonsymmetrical and Symmetrical T-Shaped Structure. IEEE Transactions on Microwave Theory and Techniques. 2006. Vol.54. No.9. P.3508-3514. https://doi.org/10.1109/TMTT.2006.880650

8. Koziel S., Kurgan P. Rapid Hierarchical Simulation-Driven Design of Compact MultiSection Branch-Line Couplers. 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). 2015. https://doi.org/10.1109/NEMO.2015.7415030

9. Horii Y. Super-Compact Multi-Layered CRLH Couplers Designed in Left-handed Phase-Advanced Region. 2009 European Microwave Conference (EuMC). Rome, Italy. 2009. P.362-365. https://doi.org/10.23919/EUMC.2009.5296260

10. Tseng C.-H. Compact LTCC Rat-Race Couplers Using Multilayered Phase-Delay and Phase-Advance T-Equivalent Sections. IEEE Transactions on Advanced Packaging. 2010. Vol.33. No.3. P.543-551. https://doi.org/10.1109/TADVP.2010.2044660

11. Kapitanova P., Kholodnyak D., Humbla S., Perrone R., Mueller J., Hein M.A.,  Vendik I. 180° Power Dividers Using Metamaterial Transmission Lines. 14th Conference on Microwave Techniques, COMITE. Prague, Czech Republic, 2008, P.1-4. https://doi.org/10.1109/COMITE.2008.4569917

12. Bessonov L.A. Teoreticheskie osnovy elektrotekhniki. Elektricheskie tsepi [Theoretical foundations of electrical engineering. Electrical circuits]. Moscow, Vysshaya Shkola Publ. 1996. (In Russian)

13. Lebedev I.V. Tekhnika i pribory SVCH [Microwave technique and devices]. Moscow, Vysshaya Shkola Publ. 1970. (In Russian)

14. Kharkevich A.A. Teoreticheskie osnovy radiosvyazi [Theoretical foundations of radio communication]. Moscow, GITTL Publ. 1957. (In Russian)

15. Atabekov G.I., Kupalyan S.D., Timofeev A.B., Khukhrikov S.S. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow, Energiya Publ. 1979. (In Russian)

16. Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov SV. Osnovy teorii tsepey [Fundamentals of circuit theory]. Moscow, Energoatomizdat Publ. 1989. (In Russian)

17. Ionkin P.A. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow, Vysshaya Shkola Publ. 1976. (In Russian)

18. Chavchanidze G.D., Artemov A.A. Dlinnye linii. Osnovnye polozheniya i resheniya: Uchebnoe posobie [Long lines. The main provisions and solutions: Study guide]. Moscow, RUT (MIIT) Publ. 2019. 66 p. (In Russian)

19. Romanenko S.N., Dmitrenko V.P., Voskoboynik V.A. Calculation of stub directional couplers for MPL taking into account dispersion and losses in the line. Radioelektronika, informatika, upravleniye [Radioelectronika, informatics, management]. 2013. No.2. P.32-36. (In Russian)

20. Fusco V. SVCH tsepi. Analiz i proektirovanie [Microwave circuits. Analysis and design]. Radio i svuaz’ Publ. 1990. 288 p. (In Russian)

21. Cadence. AWR Design Environment [online]. AWR. Accessed 10.01.2021.   URL: https://www.awr.com/ru

22. Altman J.L. Microwave Circuits. New York, Van Nost. Reinhold. 1965. 462 p.

23. Matthaei G.L., Young L., Jones E.M.T. Microwave Filters, Impedance Matching Networks and Coupling Structures. New York, McGraw-Hill. 1964.

24. Ansys. 3D Electromagnetic Field Simulator for RF and Wireless Design [online]. Accessed 10.01.2021. URL: https://www.ansys.com/products/electronics/ansys-hfss

 

For citation:

Letavin D.A. Miniaturization of quadrature stub directional couplers. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.2. https://doi.org/10.30898/1684-1719.2021.2.9   (In Russian)