Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №2
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.2.9

 

IMPROVING THE CHARACTERISTICS OF SPACE SAR

IN HIGH RESOLUTION MODES

 

S.L. Vnotchenko, M.V. Shchetinin

 

Research Institute of Precision Instruments
127490, Moscow, st. Decembrists, possession 51

 

The paper was received February 03, 2022

 

Abstract. The methods of increasing the size of the radar image obtained by space radars with synthesized aperture in high-resolution mode are analyzed. The image size increase is achieved due to the extended scanning of the antenna beam in the azimuthal plane. The basis of the considered methods is the classical searchlight mode. The modes of composite (multi-frame) searchlight shooting and sliding searchlight shooting are compared. The dependences of azimuthal resolution and frame size on the size of the scanning sector are estimated. Numerical examples are based on the parameters of COSMO-SkyMed and TerraSAR-X radars. A list of the main ways to increase scanning is provided. A brief description of the Staring Spotlight mode is given, as an example, which allows to significantly increase the detail and quality of images.

Key words: space borne synthetic aperture radar, high-resolution images, spotlight mode, multi-frame mode, sliding spotlight mode.

Corresponding author: Shchetinin Mikhail Vasil’evich, m.v.shchetinin@mail.ru

References

1. Vnotchenko S.L., Covalenko A.I., Reaman V.V, Shishanov A.V. Technical appearance of a multi-aperture space radar with a synthesized aperture based on
X-band AFAR. Vserossiyskiye radiofizicheskiye nauchnyye chteniya-konferentsii pamyati N.A. Armanda. Sektsiya 2: Radiolokatsionnyye sistemy s sintezirovannoy aperturoy [Russian Radiophysical readings-conferences in memory of N.A. Armand]
. Murom. 2010. P. 91-95. (in Russian)

2. Capece P. Active SAR Antennas: Design, Development, and Current Programs. Hindawi Publishing Corporation: International Journal of Antennas and Propagation. 2009. https://doi.org/10.1155/2009/796064

3. Stangl M., Werninghaus R., Zahn R. The TerraSAR-X active phased array antenna. 2003 IEEE International Symposium on Phased Array Systems and Technology. 2003. P.70-75. https://doi.org/10.1109/PAST.2003.1256959

4. Mittermayer J., Wollstadt S., Prats P., Scheiber R. Staring Spotlight Imaging With TerraSAR-X. 2012 IEEE International Geoscience and Remote Sensing Symposium 2012. P.1606-1609. https://doi.org/10.1109/IGARSS.2012.6350809

5. Mittermayer J., Wollstadt S., Prats-Iraola P., Scheiber R., Koppe W. The TerraSAR-X Staring Spotlight Mode Concept. IEEE Transactions on Geoscience and Remote Sensing. 2014. V.52. №6. P.1-12. http://dx.doi.org/10.1109/TGRS.2013.2274821

6. Kraus T., Bräutigam B., Mittermayer J., Wollstadt S., Grigorov C. TerraSAR-X Staring Spotlight Mode Optimization and Global Performance Predictions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V.9. 3. P.1015-1027. https://doi.org/10.1109/JSTARS.2015.2431821

7. Biondi Filippo. COSMO-SkyMed Staring Spotlight SAR Data for Micro-Motion and Inclination Angle Estimation of Ships by Pixel Tracking and Convex Optimization. Remote Sensing. 2019. 11(7). P.766. https://doi.org/10.3390/rs11070766

8. Wei Xu, Lu Zhang, Chonghua Fang, Pingping Huang, Weixian Tan, Yaolong Qi. Staring Spotlight SAR with Nonlinear Frequency Modulation Signal and Azimuth NonUniform Sampling for Low Sidelobe Imaging. Sensors. 2021. V.21(19). P.6487. https://doi.org/10.3390/s21196487.

For citation:

Vnotchenko S.L., Shchetinin M.V. Improvement of characteristics of space SAR in high resolution modes. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №2. https://doi.org/10.30898/1684-1719.2022.2.9