Journal of Radio Electronics. eISSN 1684-1719. 2024. №2
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.2.2
Propagation of a U-shaped radio pulse
in a selectively amplifying medium
A.V. Kulikova, N.S. Bukhman
Samara State Technical University
443001, Russia, Samara, Molodogvardeiskaya str., 244
The paper was received August 30, 2023.
Abstract. General relations are obtained that govern the evolution of the leading edge of a signal propagating in a selectively amplifying medium. The propagation of a pulse with a rectangular envelope, the carrier frequency of which is close to the frequency of one of the spectral amplification lines of a selective (in frequency) amplifying medium, is considered. The time dependence of the envelope of the initially rectangular signal is studied for various values of the optical thickness of the substance layer for the Gaussian and Lorentzian contours of the spectral line. It is shown that in the case of a shift of the carrier frequency of the signal relative to the center of the spectral line, the interference of the primary and amplified signal can lead to very significant oscillations of the total signal in time.
Key words: active medium, signal, leading edge, distortion, discontinuity, propagation of radio waves, propagation of electromagnetic waves.
Corresponding author: A. V. Kulikova, kulikova20102010@mail.ru
References
1. Vinogradova M. B., Rudenko O. V., Sukhorukov A. P. Teoriya voln. – 1979.
2. Klyshko D. N. Fizicheskie osnovy kvantovoi ehlektroniki. – 1986.
3. Karlov N. V. Lektsii po kvantovoi ehlektronike. – M.: nauka, 1988. – T. 52.
4. Strel'nitskii V. S. Kosmicheskie mazery //Uspekhi fizicheskikh nauk. – 1974. – T. 113. – №. 7. – S. 463-502. https://doi.org/10.3367/UFNr.0113.197407c.0463
5. Bukhman N. S. Ob iskazhenii perednego fronta kvazimonokhromaticheskogo signala v rezonansno-pogloshchayushchei srede //Radiotekhnika i ehlektronika. – 2019. – T. 64. – №. 3. – S. 231-245. https://doi.org/10.1134/S0033849419030045
6. Bukhman N. S. On the distortion of a wave packet propagating in an amplifying medium //Quantum Electronics. – 2004. – Т. 34. – №. 4. – С. 299. https://doi.org/10.1070/QE2004v034n04ABEH002670
7. Kryukov P. G., Letokhov V. S. Propagation of a light pulse in a resonantly amplifying (absorbing) medium //Soviet Physics Uspekhi. – 1970. – Т. 12. – №. 5. – С. 641 https://doi.org/10.1070/PU1970v012n05ABEH003957
8. Kozlov V. V., Rosanov N. N. Numerical modeling of generation of few-cycle pulses in a mode-locked laser //Optics and Spectroscopy. – 2013. – Т. 114. – С. 798-803. https://doi.org/10.1134/S0030400X1305007X
9. Terentyev V.S., Simonov V.A. Chislennoe modelirovanie opticheskih svojstv otrazhatelnogo interferometra, sformirovannogo v planarnoj geterostrukture lazernogo diode [Numerical simulation of optical properties of reflective interferometer formed in planar heterostructure of laser diode] //Applied photonics. – 2020. – T. 7. – No. 4. – pp. 19-36. (in Russian)
10. Ruziev Z. D. et al. Chislennoe modelirovanie generacii vtoroj garmoniki ultrakorotkih lazernyh impulsov v nelinejnyh fotonnyh kristallah [Numerical modeling of the second harmonic generation of ultrashort laser pulses in nonlinear photonic crystals] // Mathematical modeling and numerical methods. – 2022. – No. 1 (33). – P. 3-14 (in Russian)
11. Kuptsov G. V. et al. Simulation of picosecond pulse propagation in fibre-based radiation shaping units //Quantum Electronics. – 2016. – Т. 46. – №. 9. – С. 801. https://doi.org/10.1070/QEL15993
12. Arkhipov R.M., Arkhipov M.V., Diachkova O.O., Pakhomov A.V., Rosanov N.N. Sravnenie parametrov generacii lazera v rezhime kogerentnoj i nekogerentnoj sinhronizacii MOD [Comparison of laser generation parameters in coherent and incoherent mode locking regimes] //Optics and Spectroscopy– 2023. – T. 131. – No. 7. – pp. 933-940. (in Russian)
13. V.G. Voronin, О.Е. Nanii, Y.W. Xia, A.V. Vukolov, and V.I. Khlystov Generaciya gladkih mikrosekundnyh impulsov v itterbievom volokonnom lazere [Generation of smooth microsecond pulses in an ytterblum-doped glass fiber laser] //Bulletin of Moscow University. Series 3. Physics. Astronomy. – 2005. – No. 5. – pp. 35-38. (in Russian)
14. Anisimova S.А., Teterin P.E. Dinamika generacii fazovo-sopryazhennogo IAG: Nd-lazera s passivnoj modulyaciej dobrotnosti i parallelnym soedineniem rezonatorov [Generation dynamics of a phase-conjugated Nd:YAG-laser with рassive Q-switching and parallel configuration cavities] //Applied Physics. – 2007. – No. 4. – pp. 128-132. (in Russian)
15. Rozhkov A. V., Pikhtin N. A. Numerical simulation of the current dependence of emission spectra of high-power pulsed lasers based on separate-confinement double heterostructures //Technical Physics Letters. – 2018. – Т. 44. – С. 476-478. https://doi.org/10.1134/S1063785018060081
16. Bulgakova N.M., Zhukov V.P., Fedoruk M.P. Chislennoe modelirovanie rasprostraneniya femtosekundnyh lazernyh impulsov v nelinejnyh sredah [Numerical modeling of femtosecond laser pulse propagation in nonlinear media] //Computational technologies. – 2012. – T. 17. – No. 4. – pp. 14-28. (in Russian)
17. Gorobets V., Kuntsevich B., Petukhov V. Two-wave CO2 lasers with the maximum overlap time of radiation pulses //Journal of Applied Spectroscopy. – 2012. – Т. 79. – №. 5. https://doi.org/10.1007/s10812-012-9671-6
18. Arkhipov R. M. et al. Mode Locking in Lasers due to Self-Induced Transparency: New Theoretical and Experimental Results //Bulletin of the Russian Academy of Sciences: Physics. – 2020. – Т. 84. – С. 23-26. https://doi.org/10.3103/S1062873820010049
19. Kovrigin A. I. et al. Dynamics of emission from dye lasers pumped synchronously by finite picosecond pulse trains //Soviet Journal of Quantum Electronics. – 1984. – Т. 14. – №. 10. – С. 1346. https://doi.org/10.1070/QE1984v014n10ABEH006406
20. Smirnov V. I. Kurs vysshei matematiki. Tom 3. Chast' 2. Izd. 9. – 1974.
For citation:
Kulikova A.V, Bukhman N.S. Propagation of a U-shaped radio pulse in a selectively amplifying medium. // Journal of Radio Electronics. – 2024. – №. 2. https://doi.org/10.30898/1684-1719.2024.2.2 (In Russian)