

DOI: https://doi.org/10.30898/1684-1719.2024.2.8 УДК: 621.385.6

ВЫБОР ФОРМЫ ВРЕМЕННОЙ ЗАВИСИМОСТИ КОЛЕБАНИЙ УСКОРЯЮЩЕГО НАПРЯЖЕНИЯ ДЛЯ МОДЕЛИРОВАНИЯ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ГИРОТРОНА МЕГАВАТТНОГО УРОВНЯ МОЩНОСТИ

Розенталь Р.М., Фокин А.П.

Институт прикладной физики им. А.В. Гапонова-Грехова РАН, 603950, Нижний Новгород, ул. Ульянова, 46

Статья поступила в редакцию 18 декабря 2023 г.

Выполнено Аннотация. численное моделирование спектральных характеристик экспериментально реализованного гиротрона мегаваттного уровня мощности диапазона 170 ГГц. Расчеты проводились при помощи метода крупных частиц с использованием программного кода KARAT, этом возбуждения при задача трехмерного моделирования моды несимметричного типа сводилась к 2,5-мерной. При этом учитывалось высокочастотных флюктуаций на выходе высоковольтных присутствие определяющих источников питания. начальную энергию электронов. Исследованы связь формы и ширины спектра излучения моделируемого гиротрона с временной зависимостью величины ускоряющего напряжения. Показано, что лучшее совпадение с экспериментальными данными получается при сочетании относительно медленного пилообразного изменения энергии частиц с быстрыми случайными флуктуациями.

Ключевые слова: гиротрон, миллиметровое излучение, флуктуации напряжения.

Финансирование: Работа выполнена при поддержке РНФ, грант №19-79-30071. Автор для переписки: Розенталь Роман Маркович, rrz@ipfran.ru

Введение

В настоящее время единственными источниками, способными обеспечить непрерывную генерацию излучения миллиметрового диапазона с мегаваттным уровнем мощности, являются гиротроны, основанные на отборе энергии винтового электронного потока [1]. Излучение с такими параметрами прежде всего востребовано в установках управляемого термоядерного синтеза, основанного на микроволновом нагреве плазмы [2-6]. При этом желательно синхронизированная работа нескольких гиротронов, обеспечить которую можно, к примеру, путем захвата колебаний внешним сигналом [7, 8]. При этом на условия захвата гиротрона влияют флуктуации ускоряющего напряжения, приводящие к уширению спектра автономного гиротрона и смещению границ области захвата [9]. В этой связи значительную важность приобретает задача адекватного моделирования гиротрона, при котором полученный спектр выходного излучения был бы максимально приближен к результатам реальных спектральных измерений.

В данной работе представлены результаты расчетов электронно-волнового взаимодействия в гиротроне диапазона 170 ГГц с мегаваттным уровнем выходной мощности в условиях наличия регулярных и случайных изменений начальной энергии. Расчеты проводятся методом крупных частиц, при этом используется метод сокращения размерности моделируемой задачи за счет использования эквивалентной осесимметричной модели гиротрона.

1. Методика моделирования гиротрона

Рассмотрим гиротрон диапазона 170 ГГц, запитываемый электронным потоком с энергией 100 кэВ и током 35 А в котором возбуждается рабочая мода ТЕ_{m,p} с азимутальный индексом m = 28 и радиальным индексом p = 12 [10]. Для снижения времени расчетов задача трехмерного моделирования гиротрона с рабочей модой несимметричного типа сводилась к 2.5-мерной [11]. С этой целью осуществлялся подбор эквивалентной осесимметричной моды, имеющей близкий коэффициент связи с электронным пучком:

$$G_{mp} = \frac{J_{m-l}^{2} \left(v_{mp} R_{beam} / R_{0} \right)}{J_{m}^{2} \left(v_{mp} \right) \left(v_{mp}^{2} - m^{2} \right)},$$
(1)

где v_{mp} – р-й корень уравнения $J_{\rm m}'(v) = 0$, R_0 , $R_{\rm beam}$ – радиусы однородного участка резонатора и радиус инжекции электронного пучка соответственно. Для исследуемого гиротрона наиболее подходящей модой является $TE_{M,P}$ с азимутальным индексом M = 0 и радиальным индексом P = 13, отличие коэффициента связи которой составляет около 4%. Профиль резонатора в эквивалентной задаче пересчитывается по формуле:

$$R_{0,13}(z) = \frac{v_{0,13}}{v_{28,12}} R_{28,12}(z), \qquad (2)$$

где R_{0,13}(z), R_{28,12}(z) – зависимости радиуса резонатора от продольной координаты в эквивалентном и в исходном гиротроне, соответственно. Изменение профиля резонатора влечет за собой изменение добротности рабочего колебания, кроме того, для увеличения скорости расчетов границы электродинамической предполагались системы идеально проводящими, в результате чего в моделировании не учитывались омические потери. Однако для исследуемого гиротрона, в силу значительного превышения добротности над величиной дифракционной омической добротности, при использовании описанных приближений итоговое отличие добротностей составляет лишь около 1.5%, что не оказывает существенного влияния на конечный результат расчетов [12].

Расчеты гиротрона выполнялись метод крупных частиц с использованием программного кода KARAT [13,14]. В моделировании винтовой электронный пучок с питч-фактором (отношением поперечной и продольной скоростей электронов) равным 1.2 возбуждал резонатор гиротрона на моде $TE_{0,13}$ и после окончания взаимодействия осаждался на стенку электродинамической системы на участке спада ведущего магнитного поля (Рис.1).

В основе используемой в коде КАРАТ физической модели лежат уравнения Максвелла вместе с граничными условиями для полей на границах расчетной области, дополненные материальными уравнениями, связывающими

токи с напряженностями полей [15]. В процессе моделирования пространство расчетной моделируемой области разбивается на отдельные ячейки, с помощью ортогональной равномерной сетки, параллельной координатным осям. Носители зарядов представляются в дискретном виде, модуль заряда которых в целое число раз превосходит элементарный заряд.

Рис. 1. Геометрия пространства взаимодействия, мгновенное положение макрочастиц и пространственное распределение продольной компоненты высокочастотного магнитного поля (мода TE0,13).

Электрическое и магнитное поля разбиваются на два слагаемых: $E = \tilde{E} + \bar{E}$, $B = \tilde{B} + \bar{B}$, где \tilde{E} и \tilde{B} – переменные во времени поля, порожденные токами и зарядами в системе, а \bar{E} и \bar{B} – квазистатические внешние поля. Переменные поля описываются уравнениями Максвелла:

$$\nabla \tilde{\mathbf{B}} = \frac{4\pi}{c} \mathbf{J} + \frac{l}{c} \frac{\partial \mathbf{E}}{\partial t},$$

$$\nabla \tilde{\mathbf{E}} = -\frac{l}{c} \frac{\partial \tilde{\mathbf{B}}}{\partial t}, \quad ,$$

$$\mathbf{J} = \frac{l}{\Delta V} \sum_{s} q_{s} \mathbf{v}_{s}$$
(3)

где с – скорость света, \mathbf{v}_s – скорость частицы с номером s, ΔV – объем ячейки, q_s – часть заряда частицы в ячейке. В свою очередь, для описания движения каждой частицы используются уравнения Лоренца:

$$\frac{d\mathbf{p}}{dt} = q(\mathbf{E} + [\frac{\mathbf{v}}{c} \times \mathbf{B}]), \qquad (4)$$

где $\mathbf{p} = m\mathbf{v}\gamma$ – импульс частицы, \mathbf{v} – ее скорость, γ – релятивистский масс-фактор, m, q — масса покоя частицы и ее заряд.

Описанная система уравнений позволяет осуществлять самосогласованное моделирование динамики частиц во внешних и индуцированных электромагнитных полях. Для возможности проведения расчетов в практически любом частотном диапазоне в программе осуществляется нормировка переменных с использованием характерного пространственного масштаба R, который определяется на основе размеров области моделирования и задаваемого числа узлов расчетной сетки:

$$\mathbf{v}^* = \mathbf{v}/c = \mathbf{\beta}, t^* = t \cdot c/R,$$

$$\mathbf{E}^* = \mathbf{E} \frac{eR}{mc^2}, \mathbf{B}^* = \mathbf{B} \frac{eR}{mc^2}, \mathbf{J}^* = \mathbf{J} \frac{eR^2}{mc^3}$$
(5)

При этом уравнения для переменных во времени полей и импульсов частиц принимают следующий вид:

$$\begin{cases} \nabla \tilde{\mathbf{B}}^* = 4\pi \mathbf{J}^* + \frac{\partial \tilde{\mathbf{E}}^*}{\partial t^*} \\ \nabla \tilde{\mathbf{E}}^* = -\frac{\partial \tilde{\mathbf{B}}^*}{\partial t^*} \\ \frac{d\mathbf{p}^*}{dt} = \mathbf{E}^* + [\boldsymbol{\beta} \mathbf{B}^*] \end{cases}$$
(6)

Далее безразмерные величины используются без значка (*).

Для решения уравнений Максвелла используется конечноразностная схема с перешагиванием на прямоугольных сетках со сдвигом на полшага. В цилиндрической системе координат ($R\theta_z$) в предположении осевой симметрии $\partial/\partial\theta = 0$ моделируемая двумерная область в плоскости r—z покрывается прямоугольной сеткой с ячейками размером h_r и h_z . В случае моделирования слаборелятивистских гиротронов на модах ТЕ-типа, пренебрегая взаимодействием с модами ТМ-типа, достаточно использовать дифференциальные уравнения в разностном виде только для трех компонент поля E_{θ} , B_r , B_z :

$$\frac{\left(\tilde{E}_{\theta}\right)_{i,k}^{n+1} - \left(\tilde{E}_{\theta}\right)_{i,k}^{n}}{\tau} = \frac{\left(\tilde{B}_{r}\right)_{i,k+1/2}^{n+1/2} - \left(\tilde{B}_{r}\right)_{i,k-1/2}^{n+1/2}}{h_{z}} - \frac{\left(\tilde{B}_{z}\right)_{i+1/2,k}^{n+1/2} - \left(\tilde{B}_{z}\right)_{i-1/2,k}^{n+1/2}}{h_{r}} - \frac{-4\pi\left(J_{\theta}\right)_{i,k}^{n+1/2}}{\eta_{r}}, \qquad (7)$$

$$\frac{\left(\tilde{B}_{r}\right)_{i,k-1/2}^{n+1/2} - \left(\tilde{B}_{r}\right)_{i,k-1/2}^{n-1/2}}{\tau} = \frac{\left(\tilde{E}_{\theta}\right)_{i,k}^{n} - \left(\tilde{E}_{\theta}\right)_{i,k-1}^{n}}{h_{z}}, \qquad (7)$$

$$\frac{\left(\tilde{B}_{z}\right)_{i-1/2,j-1/2,k}^{n+1/2} - \left(\tilde{B}_{z}\right)_{i-1/2,j-1/2,k}^{n-1/2}}{\tau} = -\frac{r_{i}\left(\tilde{E}_{\theta}\right)_{i,k}^{n} - r_{i-1}\left(\tilde{E}_{\theta}\right)_{i-1,k}^{n}}{r_{i-1/2}h_{r}}$$

где *i* и *k* –номера узлов сетки вдоль *r* и *z*.

Все узлы сетки расчетной области и соседние узлы делятся на несколько типов в соответствии с необходимостью вычисления различных компонент электромагнитного поля в данной точке. На проводящих границах, расположенных вдоль оси *r*, уравнения Максвелла закрываются следующими условиями:

$$\left(\tilde{E}_{\theta}\right)_{i,l} = 0, (i = 1, 2, 3), \left(\tilde{B}_{z}\right)_{i-1/2, l} = 0, (i = 2, 3).$$
(8)

На проводящих границах, расположенных вдоль оси *z*, используются следующие условия:

$$\left(\tilde{E}_{\theta}\right)_{4,k} = 0, (k = 3, 4, 5), \left(\tilde{B}_{r}\right)_{4,k-1/2} = 0, (i = 4, 5).$$
(9)

На оси системы условия следующие:

$$\left(\tilde{E}_{\theta}\right)_{l,k} = 0, (k = 1, ..., 5), \left(\tilde{B}_{r}\right)_{l,k-1/2} = 0, (k = 2, ..., 5).$$
(10)

Уравнения движения макрочастиц интегрируются по следующей схеме:

$$\frac{\mathbf{p}_{1} - \mathbf{p}^{n-1/2}}{\tau / 2} = \mathbf{E}^{n}, \frac{\mathbf{p}_{2} - \mathbf{p}_{1}}{\tau} = [(\mathbf{p}_{1} + \mathbf{p}_{2})\frac{\mathbf{B}}{2}], \\ \frac{\mathbf{p}^{n+1/2} - \mathbf{p}_{2}}{\tau / 2} = \mathbf{E}^{n}, \mathbf{r}^{n=1} = \mathbf{r}^{n} + \mathbf{v}^{n+1/2}\tau$$
(11)

где **р**_{1,2} – промежуточные величины импульса:

$$\mathbf{p}_{1} = \mathbf{p}^{n-1/2} + \frac{\tau}{2} \mathbf{E}^{n}, \mathbf{p}_{2} = \mathbf{p}_{1} + a[\mathbf{p}_{3}\mathbf{B}'], \mathbf{p}_{3} = \mathbf{p}_{1} + \frac{\tau}{2}[\mathbf{p}_{1}\mathbf{B}'],$$

$$\mathbf{p}_{1}^{n+1/2} = \mathbf{p}_{2} + \frac{\tau}{2} \mathbf{E}^{n}, \mathbf{B}' = \frac{\mathbf{B}^{n+1/2} + \mathbf{B}^{n-1/2}}{2} \times \frac{1}{\sqrt{1+p^{2}}}, a = \frac{2}{1+(B'\tau/2)^{2}}$$
(12)

2. Результаты моделирования

В расчетах максимальная мощность генерации гиротрона в условиях отсутствия изменений начальной энергии частиц составляла около 1.3 МВт и достигалась при значении ведущего магнитного поля 6.96 Тл. Частота генерации при этом составляла величину $f_0 \approx 169.93$ ГГц. Моделирование динамики гиротрона выполнялось на временах до 5 мкс, что позволяло рассчитывать спектр выходного излучения с точностью 0.2 МГц. Размер одной ячейки прямоугольной сетки составлял примерно 1/10 длины волны по продольной координате и 1/25 длины волны по поперечной координате. Число макрочастиц составляло около 500. Расчеты велись на компьютере с частотой процессора 5 ГГц. Скорость расчетов составляла примерно 1 мкс за 8 часов вычислительного времени, при этом программа использовала только одно ядро процессора.

При проектировании высоковольтных источников питания мощных гиротронов характерные требования к величине флуктуаций ускоряющего напряжения, определяющими флуктуации начальной энергии электронов, устанавливаются на уровне ≤1% [16,17], при этом частотный спектр таких флуктуаций может простираться от единиц килогерц до одного мегагерца [18]. Формально это требует расчета динамики гиротрона на временах до десятков миллисекунд, что потребует десятков тысяч часов вычислительного времени даже при использовании 2.5-мерного PIC-моделирования.

В этой связи возникает необходимость поиска закона изменения начальной энергии частиц от времени, обеспечивающего форму выходного спектра излучения, максимально близкой к экспериментально измеренной. На рис.2 представлен спектр гиротрона, работающего с выходной

MBt. Для измерений осуществлялся перехват мощностью около 1 небольшой части выходного излучения, которая далее поступала на гармонический смеситель, работающий на 13-й гармонике. Также на смеситель подавался сигнал гетеродина с частотой F_{гетеролин} = 13057.4 МГц. Сигнал на промежуточной частоте регистрировался с помощью цифрового осциллографа, который на его основе осуществлял построение спектра. Таким образом, реальная частота генерации высчитывается по формуле $F_{\text{гиротрон}} = (F_{\text{гетеродин}}*13) + F_{\text{пч}} = (13057.4 \text{ МГц}*13) + F_{\text{пч}} = 169746.2 \text{ МГц} + F_{\text{пч}},$ где F_{пч} – частота сигнала на промежуточной частоте. Измеренный спектр имеет форму близкую к треугольной с шириной на полувысоте около 3 МГц, при этом "низкочастотный" склон спектра имеет быстрый спад по сравнению с "высокочастотным" склоном.

Рис. 2. Экспериментально измеренный спектр гиротрона диапазона 170 ГГц с выходной мощность около 1 МВт.

В моделировании на первом этапе задавалось пилообразное изменение начальной энергии электронов, характерное для мощных гиротронных комплексов [19]. На рис.3 представлены зависимости начальной энергии от времени и полученные выходные спектры. За нулевое значение частоты принята частота, соответствующая спектральному максимуму излучения.

При амплитуде изменений равной 0.2 кэВ и периоде 0.5 и 1 мкс в выходном линий, выделяются несколько основных расстояние спектре между которыми соответствует частоте флуктуаций начальной энергии (Рис. 3а,б). При увеличении периода изменений до 2 мкс эти линии сближаются, спектра становится близкой к треугольной (Рис.3в). что форма так При увеличении амплитуды до 0.3 кэВ ширина спектра увеличивается до значений 2-3 МГц (Рис.3г), что соответствует экспериментально измеренным значениям (Рис.2).

Рис. 3. Результаты моделирования методом крупных частиц. Зависимости начальной энергии электронов от времени (левый столбец) и соответствующие спектры выходного излучения гиротрона (правый столбец): (а) – период и амплитуда изменения начальной энергии 0.5 мкс и 0.2 кэВ, (б) – 1 мкс и 0.2 кэВ, (в) – 2 мкс и 0.2 кэВ, (г) – 2 мкс и 0.3 кэВ.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, ISSN 1684-1719, №2, 2024

Вместе с тем, в реальных экспериментальных условиях наряду с регулярными изменениями энергии частиц присутствуют и случайных флуктуации, связанные с нестабильностью параметров источника питания. Для учета таких флуктуаций в моделировании каждые 50 нс задавалось случайное изменение начальной энергии электронов в диапазоне от 0 до заданного значения dU относительно регулярного пилообразного закона.

Рис. 4. Результаты моделирования методом крупных частиц. Зависимости начальной энергии электронов от времени (левый столбец) и соответствующие спектры выходного излучения гиротрона (правый столбец). Период и амплитуда регулярного изменения начальной энергии 2 мкс и 0.3 кэВ: (а) – амплитуда случайных флуктуаций 0.05 кэВ, (б) – 0.1 кэВ, (в) – 0.15 кэВ, (г) – 0.2 кэВ.

На рис.4 представлены результаты моделирования в условиях наличия регулярных пилообразных изменений энергии частиц с амплитудой

0.3 кэВ и периодом 2 мкс и случайных флуктуаций. При введении флуктуаций dU = 0.05 кэВ происходит заметное нарушение симметрии спектра, в результате чего спад "высокочастотного склона происходит медленнее, чем "низкочастотного" (Рис.4а). Наиболее ярко это тенденция прослеживается при величине флуктуаций dU = 0.1 кэВ (Рис.4б). Однако увеличении дальнейшем флуктуаций спектр снова приобретает при симметричный характер (Рис.4в,г). Таким образом, наилучшим законом изменения начальной энергии электронов от времени можно считать пилообразную зависимость с амплитудой 0,3 кэВ и периодом 2 мкс на которой с периодом 50 нс присутствуют аддитивные случайные флуктуации с амплитудой в пределах 0.1 кэВ.

Заключение

В заключение следует отметить, что предложенный способ моделирования может быть использован и для более высокочастотных гиротронов, разрабатываемых в настоящее время для проекта установки термоядерного синтеза следующего поколения DEMO [20]. Для таких гиротронов потребуется осуществить выбор подходящей эквивалентной модели, при этом сам подход к моделированию, очевидно, останется неизменным.

Авторы выражают благодарность А.Н. Куфтину за предоставленные экспериментальные данные и участие в обсуждении материалов статьи.

Финансирование: Работа выполнена при поддержке РНФ, грант №19-79-30071.

Литература

- 1. Litvak A.G., Denisov G.G., Glyavin M.Y. Russian gyrotrons: Achievements and trends //IEEE Journal of Microwaves. 2021. T. 1. №. 1. C. 260-268.
- Денисов Г.Г. и др. Концепция гиротрона с мегаваттным уровнем мощности на первой и второй циклотронных гармониках для нагрева плазмы в сферических токамаках //Известия вузов. Радиофизика. – 2020. – Т. 63. – №. 5-6.

- Денисов Г.Г. и др. Микроволновый комплекс мегаваттного уровня мощности для системы электронно-циклотронного резонансного нагрева плазмы и поддержания тока в токамаке Т-15МД //Известия вузов. Радиофизика. – 2020. – Т. 63. – №. 5-6.
- Красильников А.В. и др. Токамак с реакторными технологиями (TRT): концепция, миссии, основные особенности и ожидаемые характеристики //Физика плазмы. – 2021. – Т. 47. – №. 11. – С. 970-985.
- 5. Лукша О.И. и др. Траекторный анализ в коллекторе с многоступенчатой рекуперацией энергии для прототипа гиротрона DEMO. Часть І. Идеализированное распределение магнитного поля //Журнал технической физики. 2021. Т. 91. №. 1. С. 125-130.
- 6. Denisov G. et al. Concept design of the megawatt power level gyrotron stabilized by a low-power signal for DEMO project //Nuclear Fusion. 2022. T. 62. №.
 3. C. 036020.
- Denisov G.G. et al. Design of master oscillator for frequency locking of a complex of megawatt level microwave sources //Microwave and Optical Technology Letters.
 2020. T. 62. №. 6. C. 2137-2143.
- Rozental R.M. et al. Concept of Gyrotron Complexes With Serial Phase and Frequency Locking //IEEE Transactions on Electron Devices. – 2023. – T. 70. – №.
 4. – C. 2161-2164.
- Бакунин В.Л., Денисов Г.Г., Новожилова Ю.В. Фазовый захват внешним монохроматическим сигналом гиротрона с низкочастотными флуктуациями напряжения и тока //Известия вузов. Радиофизика. – 2020. – Т. 63. – №. 5-6.
- Kuftin A.N. et al. First demonstration of frequency-locked operation of a 170 GHz/1 MW gyrotron //IEEE Electron Device Letters. – 2023.
- Rozental R.M., Tarakanov V.P. Potential for Acceleration of Simulation of Dynamic Processes in Oversized Gyrotrons by Means of Using 2.5 D Particle-in-Cell Method //Journal of Infrared, Millimeter, and Terahertz Waves. – 2022. – T. 43. – №. 5-6. – C. 479-492.

- Розенталь Р.М., и др. Использование 2,5-мерного РІС-кода для моделирования гиротронов с несимметричными рабочими модами // Известия вузов. Радиофизика. 2022. Т. 65. № 5-6. С. 420-433.
- Tarakanov V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc //EPJ Web of Conferences. – EDP Sciences, 2017. – T. 149. – C. 04024.
- 14. Andreev S.N., Kurilenkov Y.K., Oginov A.V. Fully Electromagnetic Code KARAT Applied to the Problem of Aneutronic Proton–Boron Fusion //Mathematics. 2023. T. 11. №. 18. C. 4009.
- 15. Тараканов В.П. Теоретический и численный анализ нелинейных задач физики плазмы посредством кода КАРАТ //Дис. на соискание ученой степени д-ра физ.-мат. наук. М., ИОФ РАН. – 2011.
- 16. Fasel D. et al. 5 MW CW supply system for the ITER gyrotrons Test Facility //Fusion engineering and design. 2011. T. 86. №. 6-8. C. 872-875.
- Ma S.X. et al. Overview of 100-kV/60-A high-voltage power supply utilized for the ECRH system on J-TEXT tokamak //IEEE Transactions on Plasma Science. – 2014. – T. 42. – №. 3. – C. 656-663.
- 18. Braune H. et al. HV-system for CW-gyrotrons at W7-X and the relevance for ITER //Journal of Physics: Conference Series. IOP Publishing, 2005. T. 25. №. 1. C. 56.
- 19. Jeong J.H. et al. Development of high voltage power supply for the KSTAR 170 GHz ECH and CD system //Fusion Engineering and Design. 2013. T. 88. №.
 5. C. 380-387.
- 20. Denisov G.G. et al. First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics //Review of Scientific Instruments. – 2018. – T. 89. – №. 8.

Для цитирования:

Розенталь Р.М., Фокин А.П. Выбор формы временной зависимости ускоряющего напряжения для моделирования спектральных характеристик гиротрона мегаваттного уровня мощности. // Журнал радиоэлектроники. – 2024. – №. 2. https://doi.org/10.30898/1684-1719.2024.2.8.