Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹2

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.2.10

 

 

 

SIMULATION OF THE BB84 QUANTUM KEY

DISTRIBUTION ALGORITHM ON FPGA

 

A.M. Sherstobitov

 

V.E. Zuev Institute of Atmospheric Optics SB RAS

634055, Russia, Tomsk, Academician Zuev square, 1

 

The paper was received November 7, 2024.

 

Abstract. The paper presents a new method for simulating physical layer of the BB84 quantum key distribution protocol and its implementation on a field programmable gate array (FPGA). The p5hoton polarization state is set using two clock signals generated in the internal FPGA generator. The process of measuring the polarization state of a photon is modeled using a detector based on an «XOR» logic gate. The results of testing the implementation of this method on FPGA are in a good agreement with the theory.

Keywords: quantum key distribution, BB84, FPGA, analog computing.

Corresponding author: Sherstobitov Artem Mikhailovich, shrarm@yandex.ru

 

References

1. Bennett C. H., Brassard G. Quantum cryptography: Public key distribution and coin tossing // Theoretical computer science. – 2014. – Ò. 560. – Ñ. 7-11.

2. Cao Y. et al. The evolution of quantum key distribution networks: On the road to the qinternet // IEEE Communications Surveys & Tutorials. – 2022. – Ò. 24. – ¹. 2. – Ñ. 839-894.

3. Nielsen M., Chuang I. Quantum Computation and Quantum Information. Cambridge University Press. – 2010. – 676 p.

4. Gisin N. et al. Quantum cryptography // Reviews of modern physics. – 2002. – Ò. 74. – ¹. 1. – Ñ. 145.

5. Xu F. et al. Secure quantum key distribution with realistic devices // Reviews of modern physics. – 2020. – Ò. 92. – ¹. 2. – Ñ. 025002.

6. Bernazzani L., Burkard G. Fluctuating parametric drive of coupled classical oscillators can simulate dissipative qubits // Physical Review Research. – 2024. – Ò. 6. – ¹. 1. – Ñ. 013284.

7. Spreeuw R.J.C. et al. Classical realization of a strongly driven two-level system // Physical review letters. – 1990. – Ò. 65. – ¹. 21. – Ñ. 2642.

8. La Cour B.R., Ott G.E. Signal-based classical emulation of a universal quantum computer // New Journal of Physics. – 2015. – Ò. 17. – ¹. 5. – Ñ. 053017.

9. Sundqvist K. et al. Exploring Analog Emulation of Quantum Computation Using Quadrature Modulation // ThinkMind (TM) Digital Library, IARIA. – 2020. – Ò. 21.

10. Kish L.B. Quantum computing with analog circuits: Hilbert space computing // Smart Structures and Materials 2003: Smart Electronics, Mems, Biomems, and Nanotechnology. – SPIE, 2003. – Ò. 5055. – Ñ. 57-65.

11. La Cour B.R. et al. Classical emulation of a quantum computer // International Journal of Quantum Information. – 2016. – Ò. 14. – ¹. 04. – Ñ. 1640004.

12. Inoue K. Quantum key distribution technologies // IEEE journal of selected topics in quantum electronics. – 2006. – Ò. 12. – ¹. 4. – Ñ. 888-896.

For citation:

Sherstobitov A.M. Simulation of the BB84 quantum key distribution algorithm on FPGA // Journal of Radioelectronics. – 2025 – ¹ 2. https://doi.org/10.30898/1684-1719.2025.2.10 (In Russian)