Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹2
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.2.15
LINEAR DISPERSION OF DIRAC FERMIONS
IN A SINGLE CRYSTAL OF A SOLID SOLUTION (Cd1-x-yZnxMny)3As2
composition x = 0.29, y = 0.01
V.S. Zakhvalinskii1, A.V. Borisenko1, A.V. Mashirov2,
A.V. Kochura3, M.N. Yapryntsev4
1Belgorod State National Research University
308015, Russia, Belgorod, Pobeda str., 852Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11, b.73Southwestern State University
305040, Russia, Kursk, 50th Anniversary of October str., b. 944Center for Collective Use "Technologies and Materials"
of the Belgorod State National Research University,
308034, Russia, Belgorod, Koroleva St., 2a, b. 5.
The paper was received February 4, 2025.
Abstract. The value of the effective mass mc(0)/m0 is determined in single crystals of a solid solution (Cd0.7Zn0.29Mn0.01)3As2 according to the results of a study of Shubnikov-de Haase oscillations in a transverse magnetic field. We compared the Shubnikov and Hall parameters of charge carriers. We have found a weak dependence of the cyclotron mass on the magnetic field. We determined the concentration of charge carriers, n2d, the mobility of charge carriers, µ2d, and the thickness of the 2D surface layer. We have determined the value of the Dingle temperature TD = 34.6 K. We have established that the dependence of the cyclotron mass mc(0)/m0 on the Fermi wave vector kF, obtained from experimentally observed Shubnikov-de Haase oscillations, agrees well with the linear dependence predicted by the theory and indicates the presence of Dirac fermions with zero effective mass in single crystals (Cd0.7Zn0.29Mn0.01)3As2. The Hall resistance oscillations are presumably caused both by the nonequipotency of the probes and by the manifestation of the quantum Hall effect in the 2D layer.
Key words: Shubnikov-de Haase effect, massless Dirac fermions, cyclotron mass, cadmium arsenide.
Financing: Ministry of Science and Higher Education (State Assignment No. 075-03-2025-526)
Corresponding author: Borisenko Alexander Vasilyevich, borisenko02.94@mail.ru
References
1. Wang Z. et al. Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2 //Physical Review B—Condensed Matter and Materials Physics. – 2013. – Ò. 88. – ¹. 12. – Ñ. 125427. https://doi.org/10.1103/PhysRevB.88.125427
2. Borisenko S. et al. Experimental realization of a three-dimensional Dirac semimetal //Physical review letters. – 2014. – Ò. 113. – ¹. 2. – Ñ. 027603. https://doi.org/10.1103/PhysRevLett.113.027603
3. Liu Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi //Science. – 2014. – Ò. 343. – ¹. 6173. – Ñ. 864-867. https://doi.org/10.1126/science.124508
4. Xu G. et al. Chern semimetal and the quantized anomalous Hall effect in HgCr 2 Se 4 //Physical review letters. – 2011. – Ò. 107. – ¹. 18. – Ñ. 186806. https://doi.org/10.1103/PhysRevLett.107.186806
5. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics //Journal of Applied Physics. – 2016. – Ò. 120. – ¹. 14. https://doi.org/10.1063/1.4958846
6. Nishihaya S. et al. Gate-tuned quantum Hall states in Dirac semimetal (Cd1− x Zn x) 3As2 //Science Advances. – 2018. – Ò. 4. – ¹. 5. – Ñ. eaar5668. https://doi.org/10.1126/sciadv.aar5668
7. Zakhvalinskii V. S. et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1− x− yZnxMny) 3As2 solid solutions //Journal of Physics: Condensed Matter. – 2017. – Ò. 29. – ¹. 45. – Ñ. 455701. https://doi.org/10.1088/1361-648X/aa8bdb
8. Ivanov O. et al. Asymmetry and parity violation in magnetoresistance of magnetic diluted Dirac–Weyl semimetal (Cd0. 6Zn0. 36Mn0. 04) 3As2 //physica status solidi (RRL)–Rapid Research Letters. – 2018. – Ò. 12. – ¹. 12. – Ñ. 1800386. https://doi.org/10.1002/pssr.201800386
9. Rancati A. et al. Impurity-induced topological phase transitions in Cd 3 As 2 and Na 3 Bi Dirac semimetals //Physical Review B. – 2020. – Ò. 102. – ¹. 19. – Ñ. 195110. https://doi.org/10.1103/PhysRevB.102.195110
10. Šmejkal L., Jungwirth T., Sinova J. Route towards Dirac and Weyl antiferromagnetic spintronics //physica status solidi (RRL)–Rapid Research Letters. – 2017. – Ò. 11. – ¹. 4. – Ñ. 1700044. https://doi.org/10.1002/pssr.201700044
11. Fukami S., Lorenz V. O., Gomonay O. Antiferromagnetic spintronics //Journal of Applied Physics. – 2020. – Ò. 128. – ¹. 7. https://doi.org/10.1063/5.0023614
12. Marenkin S. F., Trukhan V. M. Fosfidy, arsenidy tsinka i kadmiya //Minsk: Varaskin. – 2010.
13. Arushanov E. K. Crystal growth and characterization of II3V2 compounds //Progress in crystal growth and characterization. – 1980. – Ò. 3. – ¹. 2-3. – Ñ. 211-255. https://doi.org/10.1016/0146-3535(80)90020-9
14. Ril A. I. et al. Phase equilibria in the CdAs 2–Cd 3 As 2–MnAs ternary system //Russian Journal of Inorganic Chemistry. – 2017. – Ò. 62. – Ñ. 976-986. https://doi.org/10.1134/S0036023617070191
15. Marenkin S. F. et al. Formation of the α''-phase and study of the solubility of Mn in Cd3As2 //Journal of Alloys and Compounds. – 2022. – Ò. 892. – Ñ. 162082. https://doi.org/10.1016/j.jallcom.2021.162082
16. Zakhvalinskii V. S. et al. Linear dispersion of Dirac fermions in (Cd1–x–yZnxMny) 3As2, õ+ y= 0.2, ó= 0.02, 0.04, 0.06, 0.08 solid solutions //Physica Scripta. – 2021. – Ò. 96. – ¹. 12. – Ñ. 125856. https://doi.org/10.1088/1402-4896/ac3873
17. Red'ko N. A., Kagan V. D., Volkov M. P. Kvantovye ostsillyatsii soprotivleniya i koehffitsienta Kholla i kvantovyi predel v splavakh Bi 0.93 Sb 0.07 v magnitnom pole vdol' trigonal'noi osi //Fizika tverdogo tela. – 2011. – T. 53. – ¹. 9. – S. 1718-1726. https://journals.ioffe.ru/articles/viewPDF/1548
18. Borisenko S. et al. Experimental realization of a three-dimensional Dirac semimetal //Physical review letters. – 2014. – Ò. 113. – ¹. 2. – Ñ. 027603. https://doi.org/10.1103/PhysRevLett.113.027603
19. Zakhvalinskii V. et al. Two-Dimensional Surface Topological Nanolayers and Dirac Fermions in Single Crystals of the Diluted Magnetic Semiconductor (Cd1− x− y Zn x Mn y) 3As2 (x+ y= 0.3) //Crystals. – 2020. – Ò. 10. – ¹. 11. – Ñ. 988. https://doi.org/10.3390/cryst10110988
20. Novoselov K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene //nature. – 2005. – Ò. 438. – ¹. 7065. – Ñ. 197-200. https://doi.org/10.1038/nature04233
21. Lahoud E. et al. Evolution of the Fermi surface of a doped topological insulator with carrier concentration //Physical Review B—Condensed Matter and Materials Physics. – 2013. – Ò. 88. – ¹. 19. – Ñ. 195107. https://doi.org/10.1103/PhysRevB.88.195107
22. Lawson B. J. et al. Quantum oscillations in Cu x Bi 2 Se 3 in high magnetic fields //Physical Review B. – 2014. – Ò. 90. – ¹. 19. – Ñ. 195141. https://doi.org/10.1103/PhysRevB.90.195141
23. Lawson B. J., Hor Y. S., Li L. Quantum oscillations in the topological superconductor candidate Cu 0.25 Bi 2 Se 3 //Physical Review Letters. – 2012. – Ò. 109. – ¹. 22. – Ñ. 226406. https://doi.org/10.1103/PhysRevLett.109.226406
24. Zakhvalinskii V. S. et al. Transport evidence of mass-less Dirac fermions in (Cd1− x− yZnxMny) 3As2 (x+ y= 0.4) //Materials Research Express. – 2020. – Ò. 7. – ¹. 1. – Ñ. 015918. https://doi.org/10.1088/2053-1591/ab688b
For citation:
Zakhvalinskii V.S., Borisenko A.V., Mashirov A.V., Kochura A.V., Yapryntsev M.N. Linear dispersion of dirac fermions in a single crystal of a solid solution (Cd1-x-yZnxMny)3As2 composition x = 0.29, y = 0.01. // Journal of Radio Electronics. – 2025 – ¹ 2. https://doi.org/10.30898/1684-1719.2025.2.15 (In Russian)