

DOI: https://doi.org/10.30898/1684-1719.2025.2.16 УДК: 621.396.67

СВЕРХДИАПАЗОННАЯ ПОЛИКОНИЧЕСКАЯ АНТЕННА С ДИЭЛЕКТРИЧЕСКОЙ ЛИНЗОЙ

В.А. Калошин¹, НгуенТхе Тхань²

¹Институт радиотехники и электроники им. В.А. Котельникова РАН, 125009, Москва, ул. Моховая, 11, стр. 7

²Московский физико-технический институт (Национальный исследовательский университет), 141700, Московская. обл., г.Долгопрудный, Институтский пер., 9

Статья поступила в редакцию 28 февраля 2025 г

Аннотация. Исследована сверхдиапазонная поликоническая антенна с однородной диэлектрической линзой. В результате численного моделирования и оптимизации параметров методом конечных элементов и конечных разностей во временной области показано, что оптимизированная поликоническая антенна обеспечивает рабочую полосу частот 44:1 с эффективностью более 0.8.

Ключевые слова: сверхдиапазонная антенна, всенаправленная в горизонтальной плоскости антенна, поликоническая антенна, диэлектрическая линза.

Финансирование: Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме 0030-2019-006.

Автор для переписки: Нгуен Тхе Тхань, nguen.t@phystech.edu

Введение

Биконические антенны широко применяются в системах связи и радиомониторинга в качестве сверхдиапазонных (с полосой более 10:1), всенаправленных в горизонтальной плоскости антенн. К числу недостатков биконической антенны относятся относительно большие габариты и наличие провалов коэффициента усиления (КУ) в рабочей полосе частот.

В работе [1] предложена и исследована поликоническая антенна, конструкция которой позволяет уменьшить габариты и обеспечить более стабильную величину КУ. При этом поликоническая антенна формирует почти всенаправленную диаграмму направленности (ДН) с величиной КУ 2-3 дБ за исключением области вблизи ее оси. Однако в ряде приложений требуются существенно большие значения КУ.

Один из путей увеличения КУ биконической антенны заключается в использовании однородной тороидальной диэлектрической линзы [2-4]. При этом наиболее широкая полоса рабочих частот (0.7-12 ГГц) и максимальная величина КУ (10.5 дБ) получена в работе [4]. Следует отметить, что минимальная величина КУ у этой антенны в полосе частот опускается до уровня –2 дБ.

В работе [5] вместо диэлектрической линзы использована металлическая, при этом относительная полоса рабочих частот антенны не превышает 40%, а величина КУ – 9 дБ.

В работах [6,7] для повышения КУ, соответственно, биконической и поликонической антенны использованы неоднородные диэлектрические линзы. При этом наиболее широкая полоса рабочих частот (1.5-60 ГГц) и максимальная величина КУ (10.6 дБ) получена в работе [7]. Однако конструкция и, соответственно, технология изготовления неоднородных диэлектрических линз существенно более сложная, чем однородных.

Цель данной работы – исследование потенциальных возможностей поликонической антенны с однородной диэлектрической линзой.

1. Конструкция поликонической антенны

Рассмотрим поликоническую антенну (рис. 1), которая состоит из двух соосных металических поликонусов *1* и торроидальной однородной диэлектрической линзы с эллиптической образующей *2*, диэлектрической проницаемостью *є*, диаметром *D* и высотой *H*. Образующая поликонуса

имеет вид ломаной линии, линейные участки которой имеют длину l_1 , l_2 , l_3 и образуют с осью Z углы α_1 , α_2 , α_3 , соответственно.

Рис. 1. Сечение поликонической антенны с однородной диэлектрической линзой.

Антенна возбуждается 50-омной коаксиальной линией *3* диаметром 1.4 мм, проходящей через отверстие в нижнем поликонусе, центральный проводник которой соединен с верхним поликонусом.

Линза имеет одну преломляющую поверхность, а форму ее образующей в цилиндрической системе координат можно найти по известной формуле [8]:

$$(r/a)^{2} + (z/b)^{2} = 1, (1)$$

где a = fn/(n+1) и b = f(n-1)/(n+1), f = D/2.

Образующие линзы с диэлектрической проницаемостью $\varepsilon = 1.5, 1.75, 2.08, 2.56, 3.2,$ рассчитанные по формуле (1), приведены на рис. 2.

Рис. 2. Образующие однородной линзы с диэлектрической проницаемостью $\varepsilon = 1.5$ (1), 1.75 (2), 2.08 (3), 2.56 (4), 3.2 (5).

Как видно на рисунке, при $\varepsilon < 1.75$ зависимость высоты линзы от радиуса имеет немонотонный характер (имеет максимум).

2. Исследование и оптимизация поликонической антенны с однородной диэлектрической линзой

Поликоническая антенна с однородной диэлектрической линзой из материала с диэлектрической проницаемостью $\varepsilon = 15$, 1.75, 2.08, 2.56, 3.2 исследовалась с использованием электродинамического моделирования методом конечных элементов (МКЭ) в программной среде ANSYS HFSS.

В процессе моделирования проводилась оптимизация по геометрическим параметрам поликонуса для высоты H = 60 мм с целью минимизации нижней частоты полосы согласования антенны по уровню –10 дБ и максимизации коэффициента усиления антенны. В результате получены следующие оптимальные значения параметров: $l_1 = 3.5$ мм, $l_2 = 19.3$ мм, $l_3 = 16.9$ мм, $\alpha_1 = 62^0$, $\alpha_2 = 50.9^0$, $\alpha_3 = 19^0$.

Рис.3. Распределение поля в сечении поликонической антенны с линзой.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025</u>

На рис. 3 приведено распределение поля в вертикальном сечении оптимизированной поликонической антенны с однородной диэлектрической линзой диэлектрической проницаемостью 2.56 на частоте 30 ГГц. На рисунке видно формирование на выходе линзы волны с фронтом, близким к цилиндрическому.

Рис. 4. Распределения фазы поля по высоте на выходе линзы с диэлектрической проницаемостью $\varepsilon = 1.5$ (а), 1.75 (б), 2.08 (в), 2.56 (г), 3.2 (д), на частотах 1.5 (1), 20 (2), 40 ГГц (3) и 70 ГГц (4).

На рис. 4 приведены распределения фазы поля по высоте на выходе линзы с диэлектрической проницаемостью $\varepsilon = 1.5$, 1.75, 2.08, 2.56, 3.2 на четырех частотах, рассчитанные с использованием МКЭ. На рисунке видно,

что с увеличением частоты разброс фазы в апертуре антенны растет, при этом не превышает 40 градусов.

Рис. 5. Распределения амплитуды поля по высоте линзы с диэлектрической проницаемостью $\varepsilon = 1.5$ (а), 1.75 (б), 2.08 (в), 2.56 (г), 3.2 (д) на частотах 1.5 (1), 20 (2), 40 ГГц (3) и 70 ГГц (4)

На рис. 5 приведены распределения амплитуды поля по высоте на выходе линзы с диэлектрической проницаемостью $\varepsilon = 1.5, 1.75, 2.08, 2.56, 3.2$ на четырех частотах, рассчитанные с использованием МКЭ. На рисунке видно, что распределение амплитуды поля близко к равномерному, особенно на низких частотах.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025

Рис. 6. Зависимости от частоты коэффициента отражения поликонической антенны с однородной линзой с диэлектрической проницаемостью $\varepsilon = 1.5$ (1), 1.75 (2), 2.08(3), 2.56 (4) и 3.2 (5).

На рис. 6 приведены частотные зависимости коэффициента отражения (*S11*) поликонической антенны с однородной линзой диэлектрической проницаемостью 1.5, 1.75, 2.08, 2.56 и 3.2, рассчитанные с использованием метода конечных разностей во временной области (МКРВО).Нижняя частота согласования по уровню –10 дБ поликонической антенны с однородной линзой с диэлектрической проницаемостью 1.5, 1.75, 2.08, 2.56 и 3.2, составляет, соответственно, 1.45, 1.63, 1.68, 1.61 и 2.6 ГГц. Верхняя частота согласования практически не зависит от величины диэлектрической проницаемости линзы и составляет 70 ГГц.

Рассчитанные с использованием МКРВО диаграммы направленности (ДН) поликонической антенны с линзой диэлектрической проницаемостью 2.56 на восьми частотах представлены на рис. 7, рис. 8.

Рис. 7. Диаграммы направленности поликонической антенны на частоте 1.5 (1), 10 (2), 20 (3) и 30 ГГц (4).

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025

Рис. 8. Диаграммы направленности поликонической антенны на частоте 40 (1), 50 (2), 60 (3) и 70 ГГц (4).

Рис. 9. Зависимость от частоты коэффициента усиления поликонической антенны с однородной линзой с диэлектрической проницаемостью ε = 1.5 (1), 1.75 (2), 2.08 (3), 2.56 (4), 3.2 (5) и без линзы (6).

На рис. 9 приведены частотные зависимости КУ поликонической антенны с диэлектрической линзой диэлектрической проницаемостью $\varepsilon = 1.5, 1.75, 2.08,$ 2.56, 3.2 и без линзы, рассчитанные с использованием МКРВО. На рисунке видно, что поликоническая антенна с диэлектрической проницаемостью $\varepsilon = 1.5$ обеспечивает наибольшую максимальную величину КУ (14.6) дБ, однако следует учитывать, что высота этой линзы больше, чем у других линз (рис. 2).

Ha эффективности рисунке 10 приведена частотная зависимость поликонической однородной диэлектрической антенны с линзой С диэлектрической проницаемостью 1.5, 1.75, 2.08, 2.56, 3.2 и без линзы, рассчитанная с использованием МКРВО. Под эффективностью всенаправленной в горизонтальной плоскости антенной здесь понимается отношение КУ антенны к КУ синфазного линейного источника с равномерным распределением амплитуды и длиной, соответствующей высоте линзы.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025

Рис. 10. Зависимость эффективности поликонической антенны с однородной линзой с диэлектрической проницаемостью $\varepsilon = 1.5$ (1), 1.75 (2), 2.08 (3), 2.56 (4), 3.2 (5) и без линзы (6) от частоты.

На рисунке видно, что с поликоническая антенна с диэлектрической проницаемостью $\varepsilon = 1.75$ обеспечивает наибольшее значение минимальной эффективности (0.8 в полосе частот 1.45-70 ГГц).

№ работы	Высота антенны	Полоса частот	Максимальное усиление	Эффективность
[2]	120 мм	28 ГГц (4:1)	3.9 дБ	0.350.62
[3]	160 мм	0.712 ГГц (17:1)	10.5 дБ	0.471.73
[4]	115 мм	218 ГГц (9:1)	7.5 дБ	0.281.46
[5]	54 мм	2640 ГГц (1.5:1)	9 дБ	0.31.49
[6]	30 мм	420 ГГц (5:1)	9 дБ	0.341.55
[7]	60 мм	1.560 ГГц (40:1)	10.6 дБ	0.51.85
Данная работа	60 мм	1.670 ГГц (44:1)	14.4 дБ	0.82.3

Таблица 1. Характеристики биконических и поликонических антенн.

Результаты анализа характеристик излучения поликонической антенны с линзой диэлектрической проницаемостью 1.75 и цитируемых работ сведены в Таблице 1. Из результатов, приведенных в Таблице 1, следует, что исследованная в данной работе антенна обладает существенно лучшими характеристиками по сравнению с биконическими линзовыми антеннами.

При этом характеристики поликонической антенны с однородной линзой лучше, чем с неоднородной линзой [7]. Однако следует иметь в виду, что диаметр поликонической антенны с неоднородной линзой существенно (в 1.7 раза) меньше диаметра исследованной поликонической антенны с линзой из однородного диэлектрика с диэлектрической проницаемостью 1.75.

Очень высокие значения эффективности антенны на низких частотах можно объяснить влиянием на характеристики излучения поля вне линзы, амплитуда которого на низких частотах велика (рис. 5).

Заключение

На основании полученных результатов можно сделать следующие выводы:

1) Из исследованных поликонических линзовых антенн с пятью значениями диэлектрической проницаемости оптимальным значением последней является 1.75, причем как с точки зрения максимальной величины коэффициента усиления, так и эффективности антенны.

2) Оптимизированная поликоническая антенна с однородной диэлектрической линзой с диэлектрической проницаемостью 1.75 согласована по уровню –10 дБ в полосе частот 1.6-70 ГГц.

3) Оптимизированная поликоническая антенна с однородной диэлектрической линзой с диэлектрической проницаемостью 1.75 обеспечивает эффективность более 0.8 полосе 1.6-70 ГГц.

Финансирование: Работа выполнена за счет бюджетного финансирования в рамках государственного задания по теме 0030-2019-006.

Литература

- Калошин В.А., Мартынов Е.С., Скородумова Е.А. Исследование характеристик поликонической антенны в широкой полосе частот // РЭ. 2011. Т. 56. №9. С.1094.
- Marcel D. Blech, Arndt T. Ott, Thomas F. Eibert. A Two Octave Bandwidth Dielectric Loaded Biconical Antenna with High Sidelobe Suppression // 2009 3rd European Conference on Antennas and Propagation. Berlin. P. 1006.
- Titan Z., Sievert B., Eube M., et al. Rotationally Symmetric Lens Antenna with Biconical Feed for Broadband Measurement Applications// 52th Europ. Microwave Conf. (EuMC). Milan. 2022. P. 612.
- 4. Dubrovka F.F., Piltyay S., Movchan M., Zakharchuk I. Ultrawideband Compact Lightweight Biconical Antenna with Capability of Various Polarization Reception for Modern UAV Applications // IEEE Trans. on Antennas and Propagation. 2023. Vol. AP-71. No 4. P. 2922.
- Zhang Zhi-Yi, Leung Kwok Wa, Lu Kai. Wideband and High Gain Omnidirectional Biconical Antenna for Milimeter-Wave Applications // IEEE Trans. on Antennas and Propagation. 2023. V. AP- 71. No. 1. P.58.
- 6. Uskov G.K., Smuseva K.V., Seregina E.A., et al. Biconical Antenna with Anisotropic Dielectric Lens for the Antenna Pattern Side Lobes Reduction // IEEE 8th All-Russian Microwave Conference (RMC). Moscow. 2022. P.191.
- 7. Калошин В.А., Нгуен Т.Т. Сверхдиапазонная поликоническая антенна с градиентной диэлектрической линзой // РЭ. 2025. Т. 70. № 1. (в печати).
- 8. Зелкин Е.Г., Петрова Р.А. Линзовые антенны. М.: Сов. Радио. 1974.

Для цитирования:

Калошин В.А., Нгуен Тхе Тхань. Сверхдиапазонная высоконаправленная поликоническая антенна с диэлектрической линзой. // Журнал радиоэлектроники. – 2025 – № 2. https://doi.org/10.30898/1684-1719.2025.2.16