Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹2
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.2.2
THE INFLUENCE OF MAGNETOELASTIC CONNECTION
ON MAGNETIZATION EQUILIBRIUM POSITION PRECESSION
IN STRUCTURE: FINE MAGNETIC SLIDE – THICK ELASTIC SUBSTRATE
V.S. Vlasov 1, V.N. Shaporov 1, V.G. Shavrov 2, V.I. Shcheglov 2
1 Syktyvkar State University
167001, Russia, Syktyvkar, Oktyabr'skii prosp., 55
2 Institute of Radio Engineering and Electronics RAS
125009, Russia Moscow, Mokhovaya, 11 b. 7
The paper was received November 19, 2024.
Abstract. The excitation of coupled magnetoelastic oscillations in a plane-parallel system consisting of a normally magnetized thin ferromagnetic film deposited on a thick nonmagnetic elastic substrate is investigated. The primary focus of this study is the precession of the magnetization equilibrium position. Two distinct temporal regimes of oscillatory dynamics are identified: the transient establishment phase and the steady-state regime. During the transient phase, as the applied static magnetic field is reduced, four distinct oscillatory modes are observed: regular oscillations, relaxing beats, precession of the magnetization equilibrium position, and irregular beats. In the steady-state regime, only the precession of the magnetization equilibrium position persists within the field range corresponding to a reduced demagnetization effect. The oscillatory behavior is characterized by two sinusoidal components, corresponding to the magnetization projections mx and my, which exhibit equal amplitudes and a mutual phase shift of 90°. The dependence of the precession period of the equilibrium position on the applied static magnetic field is analyzed for different values of the magnetoelastic interaction constant. It is demonstrated that an increase in magnetoelastic coupling results in a reduction of the precession period, with this effect becoming more pronounced at higher field strengths. This behavior is attributed to the effective loading of the magnetic system by the elastic medium, which slows the magnetization dynamics and thereby increases the period. Furthermore, the dependence of the precession period on the amplitude of the alternating magnetic field is examined for various values of the magnetoelastic interaction constant. It is found that stronger magnetoelastic coupling systematically leads to a shorter precession period. This effect is hypothesized to arise from an overall increase in system stiffness due to the magnetoelastic interaction. The influence of magnetoelastic coupling on the amplitude of precessional oscillations of the equilibrium position is also analyzed for different values of the static field. It is shown that as the coupling strength increases, the oscillation amplitudes tend to stabilize around an intermediate value, corresponding to the average between the maximum and minimum amplitudes observed in the absence of coupling. Additionally, the behavior of the elastic component of the oscillations is investigated as a function of magnetoelastic coupling strength. The amplitude of elastic oscillations is found to exhibit a linear dependence on the magnetoelastic interaction parameter. Finally, potential directions for further research are outlined, including an in-depth analysis of nonlinear effects and the role of additional anisotropic contributions in the magnetoelastic dynamics of the system.
Keywords: magnetization precession, magnetoelastic interaction, development vibration in time.
Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.
Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru
References
1. Strauss W. Magnetoelastic properties of yttrium iron garnet ferrite. // In book: Physical Acoustics. V.4. Part.B. Application of physical acoustics in quantum physics and solid state physics. New York and London: Academic Press. 1970. P.241-316.
2. Adam J.D. Analog signal processing with microwave magnetics // Proc. IEEE. 1988. V.76/¹2, P.159-170.
3. Ishak W.S. Magnetostatic wave technology: a review. // Proc. IEEE. 1988. V.76. ¹2. P.171-187.
4. Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials. // IEEE Trans. on Microwave Theory and Techniques. 2002. V.50. ¹3. P.721-737.
5. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.
6. Kurushin e.p., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave devices. // Micro-electronics. 1977. V.6. ¹6. P.549-561.
7. Serga A.A., Chumak A.V., Hillebrands B. YIG magnonics // J. Phys. D: Appl. Phys. 2010. V.43. P.264002(16).
8. LeCraw R.C., Comstock R.L. Magnetoelastic interactions in ferromagnetic dielectrics. // In book: Physical Acoustics. V.3. Part.B. Lattice dynamics. New York and London: Academic Press. 1965. P.156.
9. Kalashnikova A.M., Kimel A.V., Pisarev R.V. Ultrafast optomagnetism. // Phys. Usp. 2015. T.58. ¹10. P.969-980
10. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients. // Phys. Rev. B. 2016. V.94. ¹2. P.024415(7).
11. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The modern problems on ultrafast magnetoacoustics (Review). // Acoustic Physics. 2022. V.68. ¹1. P.18-47.
12. Sparks M., Tittmann B.R., Mee J.E. Newkirk C. Ferromagnetic resonance in epitaxial garnet thin films // JAP. 1969. V.40. ¹3. P.1518.
13. Chen H., De Gasperis P., Marcelli R., Pardavi-Horvath M., McMichael R., Wigen P.E. Wide-band linewidth measurements in yttrium iron garnet films // JAP. 1990. V.67. ¹9. P.5530.
14. Telesnin R.V., Kozlov D.I., Dudorov V.N., Ferromagnetic resonance in epitaxial films Y3Fe5-xGaxO12. // Phys. Sol. St. 1974. V.16. ¹11. P.3532.
15. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Investigation of epitaxial films pf mixed ferrite-garnets by ferromagnetic resonance method. // Phys. Sol. St. 1975. V.17. ¹10. P.3045.
16. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial films of mixed ferrite-garnet. // Journal of Communication Technology and Electronics. 1976. V.21. ¹9. P.1894.
17. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial mixed ferrite-garnet films with cubic anisotropy. // Phys. Sol. St. 1976. V.18. ¹12. P.3694.
18. An K., Litvinenko A.N., Kohno R., Fuad A.A., Naletov V.V., Vila L., Ebels U., De Loubens G., Hurdequint H., Beaulieu N., Ben Youssef J., Vukadinovic N., Bauer G.E.W., Slavin A.N., Tiberkevich V.S., Klein O. Coherent long-rare transfer of angular momentum between magnon Kittel modes by phonons. // Phys. Rev. B. 2020. V.101. ¹6. P.060407(6)
19. Kuzmichev A.N., Vetoshko P.M., Knyazev G.A., Belotelpv V.I,, Bunkov Yu.M. Features of the interaction of a magnon Bose-Einstein condensate with acoustic modes of Yttrium Iron Garnet films. // JETP Letters. 2020. V.112. ¹11. P.710-714.
20. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Chernov A.I. // Modulation of magnetoelastic connection by ferromagnetic resonance in ferrite-garnet films. // Technical Physics. 2021. V.91. ¹7. P.1124-1131.
21. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Shumilov A.G., Chernov A.I. Ferromagnetic resonance and elastic vibrations in epitaxial yttrium ferrite-garnet films. // JETP. 2021. V.159. ¹2. P.307-314.
22. Gulyaev Yu.V., Zilberman P.E., Kazakov G.T., Sysoev V.G., Tikhonov V.V., Filimonov Yu.A., Nam B.P., Khe A.S. Observation of fast magnetoelastic waves in thin yttrium-iron garnet wafers and epitaxial films. // JETP Letters. 1981. V.34. ¹11. P.477-481.
23. Kazakov G.T., Tikhonov V.V., Zilberman P.E., // Phys.Tv.Tela. 1983/ V.25. ¹8. P.2307-2312.
24. Andreev A.S., Zilberman P.E., Kravchenko V.B., Ogrin Yu.F., Temiryazev A.G., Filimonova L.M. // Tech.Phys.Letters. 1984. V.10. ¹2. P.90-94.
25. Khivintsev Yu.V., Sakharov V.K., Visotskii S.L., Filimonov Yu.A., Stognii A.I., Nikitov S.A. Magnetoelastic Waves in submicron Yttrium-Iron-Garnet films manufactured by means of ion-beam sputtering onto Gadolinium-Gallium-Garnet substrates. Technical Physics. 2018. V.63. ¹7. P.1029-1035.
26. Streib S., Keshtgar H., Bauer G.E.W. Damping of magnetization dynamics by phonon pumping. // Phys.Rev.Lett. 2018. V.121. ¹2. P.027202(6).
27. Vetoshko P.M., Vlasov V.S., Shavrov V.G., Shcheglov V.I. Effect of elastic resonances of substrate on ferromagnetic resonance in yttrium iron garnet films. || Journal of Communication Technology and Electronics. 2023. V.68. ¹2. P.156-163.
28. Tihonov A.N., Samarsky A.A. Equations of mathematical physics. M.: Nauka. 1972.
29. Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. Elastic resonances in structure: thin magnetic film – thick elastic substrate // Zhurnal Radio electroniki – Journal of Radio Electronics. 2023. ¹11. https://doi.org/10.30898/1684-1719.2023.11.12.
30. Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. The second magnetoelastic resonance in structure: thin magnetic film – thick elastic substrate. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2023. ¹11. https://doi.org/10.30898/1684-1719.2023.11.25.
31. Shaporov V.N., Shavrov V.G., Shcheglov V.I. Resonance related magnetoelastic modes in the structure of ferromagnetic-dielectric. // Journal of Communications Technology and Electronics. 2024. V.69. ¹3. P.171-180.
32. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear dynamics of magnetization establishment in ferrite plate with magnetoelastic properties in conditions of orientation transition // Journal of Communications Technology and Electronics. 2010. V.55. ¹6. P.689-701.
33. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Forced nonlinear precession of magnetization vector in conditions of orientation transition. // Journal of Communications Technology and Electronics. 2011. V.56. ¹1. P.84-96.
34. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Multi-regime character of nonlinear second order magnetization precession in conditions of orientation transition // Journal of Communications Technology and Electronics. 2011. V.56. ¹9. P.1120-1131.
35. Shavrov V.G., Shcheglov V.I. Ferromagnetic resonance in conditions of orientation transition. M.: Fizmatlit. 2018.
36. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. // Journal of Communications Technology and Electronics. 2009. V.54. ¹7. P.821.
37. Vlasov V.S., Kirushev M.S., Shavrov V.G., Shcheglov V.I. The second order magnetization precession in magnetoelastic medium. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2015. ¹4. http://jre.cplire.ru/jre/apr15/16/text.pdf.
38. Vlasov V.S., Shavrov V.G., Shcheglov V.I. The Nonlinear Excitation of Hypersound in Bilayer Ferrite Structure. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2013. ¹2. http://jre.cplire.ru/jre/feb13/10/text.pdf.
For citation:
Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. The influence of magnetoelastic connection on magnetization equilibrium position precession in structure: fine magnetic slide – thick elastic substrate. // Journal of Radio Electronics. – 2025. – ¹ 2. https://doi.org/10.30898/1684-1719.2025.2.2 (In Russian)