

DOI: https://doi.org/10.30898/1684-1719.2025.2.7 УДК: 621.396.96

ДЕТЕКТИРОВАНИЕ ОБЪЕКТОВ ВОЕННОЙ ТЕХНИКИ НА ЗАШУМЛЕННЫХ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЯХ С ИСПОЛЬЗОВАНИЕМ ДЕТЕКТОРА YOLOV4-TINY

И.Ф. Купряшкин

Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» 394064, Воронеж, ул. Старых Большевиков, д. 64

Статья поступила в редакцию 24 октября 2024 г.

Аннотация. Приведены результаты детектирования отметок объектов из набора MSTAR на радиолокационных изображениях, формируемых в условиях шумовых помех, с использованием нейросетевого детектора YOLOv4-tiny. Показано, что в случае однородного фона работу детектора можно считать удовлетворительной при отношении сигнал/помеха на изображении 10 дБ и более, и полностью сорванной при отношении сигнал/помеха менее 0 дБ

Ключевые слова: глубокая сверточная нейронная сеть, радиолокационное изображение, детектирование объектов, шумовая помеха.

Автор для переписки: Купряшкин Иван Федорович, ifk78@mail.ru

Введение

Вопросам детектирования отметок объектов на радиолокационных изображениях (РЛИ) с использованием нейронных сетей уже посвящено достаточно большое количество публикаций [1-12]. В целом, можно отметить, что нейросетевые детекторы демонстрируют высокое качество работы в широком диапазоне условий.

Однако вследствие того, что в современных условиях радиолокационные системы (РЛС) обзора Земли стали одним из важнейших источников в том числе и разведывательной информации, значительный интерес представляет обратная задача, а именно задача срыва процесса детектирования объектов с целью их скрытия от противника [13].

Одним из способов ее решения является формирование преднамеренных шумовых помех, эффект воздействия которых на РЛИ проявляется в увеличении среднего фонового уровня [13]. При достаточном энергопотенциале средств шумовых помех это увеличение может достичь степени, при которой сколько-нибудь эффективное дешифрирование РЛИ исключается [13].

Вопросы нейросетевого поиска и обнаружения объектов на РЛИ, формируемых в условиях воздействия на РЛС преднамеренных помех, в известной литературе практически не отражены. Можно отметить работу автора настоящей статьи [14], в которой предпринята попытка определить степень зашумления РЛИ, достаточную для срыва нормальной работы детектора, представляющего собой комбинацию CFAR-детектора (для обнаружения областей интереса) и глубокой сверточной нейронной сети (для принятия решения о принадлежности области интереса к интересующему классу объектов). Такое построение детектора было использовано для получения как можно более близкой к предельной оценке качества работы алгоритмов на основе глубоких нейросетей применительно к зашумленным РЛИ.

В то же время работа детектора [14] характеризуется низкой скоростью, что при анализе детальных РЛИ участков земной поверхности с площадью до нескольких сотен квадратных километров является критическим недостатком.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025</u>

Повышение скорости работы при сохранении приемлемой точности результатов вообще является одним из основных направлений развития нейросетевых детекторов. В связи с этим на сегодняшний день в задачах детектирования объектов на РЛИ широкое применение находят такие архитектуры, как Fast-R-CNN, Faster-R-CNN, YOLO, SSD [1-11]. Следует выделить работу [11], так как в ней приведена детальная сравнительная характеристика тридцати различных видов архитектур детекторов.

То есть следует полагать, что основным инструментом автоматического поиска и классификации объектов на РЛИ уже в ближайшем будущем окончательно станут нейросетевые детекторы, основанные на перечисленных быстродействующих архитектурах. В связи с этим оценка их устойчивости к воздействию шумовых помех в интересах уточнения требований к средствам радиопротиводействия авиационным и космическим РЛС является актуальной задачей.

Целью работы является изучение возможностей быстродействующих нейросетевых детекторов по поиску и классификации объектов военной техники на радиолокационных изображениях, сформированных в условиях преднамеренных активных шумовых помех.

1. Характеристика и порядок подготовки обучающих и тестовых наборов данных

В качестве исходных данных используется часть набора Moving and Stationary Target Acquisition and Recognition (MSTAR) [2,14], включающая РЛИ десяти образцов военной техники X-диапазона с разрешением около 0,3 м. Примеры РЛИ объектов набора и их фотографии приведены на рис. 1.

Рис. 1. Оптические и радиолокационные изображения объектов набора MSTAR.

Из всех имеющихся изображений объектов сформированы тренировочный и тестовой наборы объемом 2814 и 2503 изображения соответственно. Изображения тренировочного набора соответствуют съемке с углом визирования 17 градусов, тестового набора – 15 градусов. Сведения о количестве изображений по классам приведены в таблице 1.

Таблица 1. Количество изображений тренировочного и тестового наборов по классам.

Класс (количество изображений тренировочного/тестового набора)						
2C1	БМП-2	БРДМ-2	БТР-60	БТР-70		
299/274	233/195	298/274	256/195	233/196		
D7	T-62	T-72	ЗиЛ-131	ЗСУ-23-4		
299/274	299/273	299/274	299/274	299/274		

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025</u>

Каждое РЛИ представлено в форме массива комплексных отсчетов **I**. На начальном этапе для каждого изображения формируются маски отсчетов отметки объекта и его радиолокационной тени:

$$M_{ij} = \begin{cases} 1, \ \left| \dot{I}_{ij} \right| \ge I_0 \\ 0, \ \left| \dot{I}_{ij} \right| < I_0 \end{cases}, \ T_{ij} = \begin{cases} 1, \ \left| \dot{I}_{ij} \right| < I_T \\ 0, \ \left| \dot{I}_{ij} \right| > I_T \end{cases},$$
(1)

где I_0 и I_T – соответствующие пороговые значения, порядок определения которых подробно изложен в [14], $i = \overline{1, N}$, $j = \overline{1, N}$; N = 44 – размерность отметки.

Далее формируется однородное фоновое изображение $\dot{\mathbf{I}}_{\phi}$, размерность которого составляет 416×416 комплексных отсчетов, амплитуды которых распределены по закону Вейбулла $w(x, a, b) = \frac{b}{a} \left(\frac{x}{a}\right)^{b-1} \exp\left\{-\left(\frac{x}{a}\right)^{b}\right\}$ с параметрами a = 0,025 и b = 0,75, а фазы – равномерно на интервале $[-\pi;\pi]$.

В пределах фонового изображения размещаются от двух до пяти (выбирается случайным образом) отметок объектов произвольных классов в соответствии с правилом:

$$\dot{I}_{\phi_{i+n,j+m}} = \begin{cases} \dot{I}_{ij}, M_{ij} = 1\\ 0, \quad T_{ij} = 1\\ \dot{I}_{\phi_{ij}}, M_{ij} = 0 \lor T_{ij} = 0 \end{cases}$$
(2)

где *n* и *m* – смещения отметки по строке и столбцу фонового изображения, выбираемые случайным образом с учетом условия невыхода отметок за пределы изображения, а также исключения их взаимного наложения.

Значения смещений каждой отметки и ее класса запоминаются с целью последующего аннотирования (разметки) полученных изображений в формате используемого детектора.

Далее полученный массив $\dot{\mathbf{I}}_{\phi}$ поэлементно суммируется с массивом $\boldsymbol{\eta}$ комплексных независимых гауссовских отсчетов с нулевым средним и среднеквадратическим отклонением действительной и мнимой части $\frac{m}{q}\sqrt{\frac{2}{\pi}}$, где m – оценка среднего значения амплитуд отсчетов отметок выбранных объектов в пределах их масок M_{ij} ; значение q при этом соответствует заданному отношению сигнал/помеха на изображении.

Над полученным суммарным комплексным массивом осуществляется операция двумерной свертки:

$$\hat{\mathbf{I}} = \left| \dot{\mathbf{I}}_{\phi} + \dot{\boldsymbol{\eta}} \right| * \boldsymbol{\rho} \,, \tag{3}$$

с ядром:

$$\rho_{ij} = \exp\left(-\frac{0.5}{k_r^2} \left(\left(i - \frac{N}{2}\right)^2 + \left(j - \frac{N}{2}\right)^2\right)\right). \tag{4}$$

Коэффициент k_r в выражении (5) определяет задаваемую степень ухудшения разрешающей способности, так при $k_r = 1$ разрешение восстанавливаемого изображения соответствует исходному и составляет около 0,3 м. Это необходимо для определения необходимой степени детализации ложной отметки при различном разрешении РЛС.

Результат свертки преобразуется в целочисленный 8-битный формат в соответствии с правилом:

$$I_{ij} = \begin{cases} \bar{I}_{kij}, \ \bar{I}_{ij} \le 2^8 \\ 2^8, \ \hat{I}_{ij} > 2^8 \end{cases},$$
(5)

где
$$\bar{I}_{ij} = \operatorname{int}\left\{2^9 \times \frac{|\hat{I}_{ij}| - I_{\min}}{I_{\max}}\right\}; \quad I_{\max} = \max\{|\hat{\mathbf{I}}|\} \quad \text{и} \quad I_{\min} = \min\{|\hat{\mathbf{I}}|\} - \max\{|\hat{\mathbf{I}}|\}$$

и минимальная амплитуды отсчетов изображения соответственно.

Для каждого из значений отношения сигнал/помеха *q* = 0; 5; 10; 15; 20 дБ в соответствии с (1)-(5) были сформированы по 1000 тренировочных (обучающих) и по 500 тестовых фоновых изображений.

Примеры тестовых изображений при различном отношении сигнал/помеха приведены на рис. 2.

Рис. 2. Тестовые изображения при отношении сигнал/помеха: a - 20 дБ (5 объектов); $\delta - 15 \text{ дБ}$ (2 объекта); e - 10 дБ (3 объекта); e - 5 дБ (4 объекта); $\partial - 0 \text{ дБ}$ (5 объектов).

2. Характеристика детектора и результатов его работы

В качестве сети-детектора использовалась сеть YOLOv4-tiny, предобученная на датасете СОСО (Common Objects in Context). Сети семейства YOLO являются одними из наиболее популярных благодаря высокой скорости работы. Выбор tiny-версии обусловлен существенно меньшими требованиями к вычислительным ресурсам по сравнению с полной версией YOLOv4, так как количество ее настраиваемых параметров относительно невелико и составляет 5'894'906.

Так как все изображения и отметки являются равномасштабными, то для упрощения и ускорения обучения использовался только один размер фиксированной рамки (anchor box) - 44 на 44 пикселя, что соответствует размерности отдельной отметки. Подаваемые на вход сети пакеты тренировочного и тестового наборов включали по 10 изображений, количество эпох обучения – 100. В качестве оптимизатора использовался алгоритм Adam, параметр скорости обучения изменялся от 10⁻³ до 0,5×10⁻⁴. Пороговое значение параметра IoU (пересечение над объединением) задавалось равным 0,45, пороговое значение уверенности принадлежности классу (score) -0,3.

Для оценки качества работы детектора применялась стандартная метрика в виде интегрального параметра mean Average Precision (mAP), представляющего собой усредненное по всем классам тестовой выборки значение показателя Average Precision (AP). В свою очередь, AP каждого класса определяется как площадь под кривой «*p*-*r*», где значение *p* («precision») определяется как:

$$p = \frac{N_{TP}}{N_{TP} + N_{FP}},\tag{6}$$

а значение r («recall») – как:

$$r = \frac{N_{TP}}{N_{TP} + N_{FN}},\tag{7}$$

где N_{TP} – число правильно обнаруженных объектов заданного класса (True Positive); N_{FP} – число ложных обнаружений объектов заданного класса (False Positive); N_{FN} – число необнаруженных объектов (пропусков) заданного класса (False Negative).

То есть показатель «recall» в некотором смысле характеризует вероятность обнаружения объекта заданного класса среди их общего количества в тестовой выборке, причем значение «recall», близкое к единице, свидетельствует еще и о небольшом количестве ложных тревог. Показатель «precision» можно рассматривать как своего рода вероятность правильной классификации обнаруженных объектов.

Расчет значения АР для отдельного класса осуществляется в соответствии с выражением:

$$AP = \sum_{k=1}^{N_k} p_k (r_k - r_{k-1}), \qquad (8)$$

где p_k и r_k – значения «precision» и «recall», пересчитываемые в соответствии с (6) и (7) каждый раз при очередном *k*-м принятии решения об обнаружении объекта интересующего класса в процессе обработки изображений всего тестового набора. При этом пересчет осуществляется только при условии изменения значения r_k , т.е. при $r_k \neq r_{k-1}$.

Результаты оценки показателей (6)-(8) для каждого из десяти классов набора MSTAR при различных значениях *q* приведены в таблице 2, обобщенные по десяти классам значения показателей – в таблице 3.

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №2, 2025

Таблица 2. Результаты детектирования изображений тесто	эвого набора
при различном отношении сигнал/помеха <i>q</i> .	

	2C1	БМП-2	БРДМ-2	БТР-60	БТР-70	D7	T-62	T-72	ЗиЛ-	ЗСУ-
				a – 20 r	rΓ m A D -	- 04 44 0/			131	23-4
λī	q = 20 db, mAP = 94,44 %									164
IN N	100	185	148	160	170	165	180	194	190	164
NTP	155	1/9	145	168	157	163	157	1/8	189	160
NFP	19	21	21	1	5	6	5	14	15	1
r	93,37%	96,76%	97,97%	93,33 %	92,35 %	98,79%	87,22%	91,75 %	99,47%	97,56 %
<i>p</i>	89,08 %	89,50 %	87,35 %	99,41 %	96,91 %	96,45 %	96,91 %	92,71 %	92,65 %	95,81 %
AP	92,45 %	95,66 %	95,59 %	93,27%	92,23 %	98,77%	87,08 %	90,99 %	99,15 %	97,28 %
λī	176	169	200	q = 15 p	195	202	102	169	171	179
IV NI	170	100	106	100	105	102	192	100	1/1	1/0
NTP	20	157	190	155	175	198	20	130	133	107
INFP	50 85 80 0/	23	23	9 00 17 0/	22 02 51 0/	$\frac{14}{08020}$	20	11 80.20.0/	10	02 92 0/
r	83,80 %	95,45 %	98,00 %	92,17 %	95,51 %	98,02 %	91,13 %	89,29%	90,04	95,82 %
p	83,43 %	80,20 %	88,09 %	94,44 %	88,72 %	93,40 %	89,74 %	93,17%	89,00 %	95,45 %
AP	83,04 %	92,49 %	96,28 %	91,85%	92,39%	97,07%	90,42 %	88,28 %	89,99 %	93,03 %
N	171	171	194	$\frac{q-10}{167}$	157	168	179	172	187	170
NTD	147	141	183	139	112	165	135	1/2	159	165
NEP	57	36	53	12	24	15	22	34	53	16
r	85.96 %	82.46 %	94.33 %	83.23 %	71.34 %	98.21 %	75.42.%	81.98 %	85.03 %	97.06 %
n	72.06 %	79.66 %	77.54 %	92.05 %	82.35 %	91.67 %	85,99 %	80.57 %	75.00 %	91,16 %
AP	79.50 %	78,75 %	89.13 %	82.42 %	68,79 %	98.04 %	73,39 %	79.37 %	81.35 %	96.01 %
	19,0070	10,10 10	07,10 70	а = 5 л	Б. mAP =	52.01 %	10,02 10	19,01 10	01,00 /0	,0170
N	175	178	190	187	170	166	177	179	174	166
NTP	107	98	129	119	95	140	115	110	98	130
N _{FP}	135	107	93	56	79	53	88	64	111	53
r	61,14 %	55,06 %	67,89 %	63,64 %	55,88 %	84,34 %	64,97 %	61,45 %	56,32 %	78,31 %
р	44,21 %	47,80 %	58,11 %	68,00 %	54,60 %	72,54 %	56,65 %	63,22 %	46,89 %	71,04 %
AP	40,38 %	40,53 %	46,43 %	57,38 %	40,85 %	80,51 %	50,92 %	51,09 %	38,21 %	73,80 %
<i>q</i> = 0 дБ, mAP = 11,11 %										
N	166	179	187	168	180	154	181	179	163	171
N_{TP}	1	33	3	5	31	136	52	58	41	49
NFP	8	69	2	26	69	287	149	199	121	92
r	0,60 %	18,44 %	0,02 %	2,98 %	17,22 %	88,31 %	28,73 %	32,40 %	25,15 %	28,65 %
p	0,11 %	32,35 %	0,60 %	16,13 %	0,31 %	32,15 %	25,87 %	22,57 %	25,31 %	34,75 %
AP	0,12 %	6,72 %	0,96 %	1,06 %	7,36 %	46,31 %	15,79 %	10,03 %	10,14 %	12,56 %

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №2, 2025</u>

	Отношение сигнал/помеха тренировочного и тестового наборов						
	q=20дБ	q = 15дБ	q=10дБ	q=5дБ	q=0дБ		
N	1741	1806	1736	1762	1728		
NTP	1651	1675	1487	1141	409		
N_{FP}	114	182	322	839	1022		
N_{TP}/N	94,78 %	92,75 %	85,66 %	64,76 %	23,67 %		
$N_{FP}/(N_{TP}+N_{FP})$	6,46 %	9,80 %	17,79 %	42,37 %	71,42 %		

Таблица 3. Обобщенные результаты детектирования изображений тестового набора при различном отношении сигнал/помеха *q*.

В таблице 4 приведены результаты оценки показателя mAP для всех сочетаний (по отношению сигнал/помеха) тренировочных и тестовых наборов. В скобках приведены оценки показателя mAP для детектора на основе сети YOLOv3-tiny, дообученного на этих же наборах изображений, демонстрирующие уверенное превосходство YOLOv4-tiny.

Обучающий набор	Тестовый набор						
1	<i>q</i> = 20 дБ	<i>q</i> = 15 дБ	<i>q</i> = 10 дБ	<i>q</i> = 5 дБ	q=0дБ		
20 дБ	94,44 % (88,44 %)	87,28 %	48,74 %	5,72 %	0,08 %		
15 дБ	93,39 %	91,66 % (80,62 %)	68,73 %	15,07 %	0,28 %		
10 дБ	82,84 %	82,27 %	82,68 % (65,50 %)	40,21 %	1,22 %		
5 дБ	21,35 %	26,10 %	38,16 %	52,01 % (9,06 %)	7,26 %		
0 дБ	1,06 %	1,71 %	2,92 %	5,98 %	11,11 % (7,67 %)		

Таблица 4. Результаты детектирования изображений тестового набора при различном отношении сигнал/помеха *q* (значения показателя mAP)

Примеры результатов детектирования тестового изображения (*q* = 20 дБ) детекторами, обученными при различном отношении сигнал/помеха, приведены на рис. 3. Синими и красными прямоугольниками выделены правильно и неправильно классифицированные объекты соответственно.

Рис. 3. Результат детектирования тестового изображения детекторами, обученными при отношении сигнал/помеха: *a* - 20 дБ; *б* - 15 дБ; *в* - 10 дБ; *г* - 5 дБ; *д* - 0 дБ.

В целом, из анализа данных таблиц 2 и 3 следует очевидный вывод о снижении качества работы детектора при уменьшении отношения сигнал/помеха. При этом имеет место одновременное как снижение количества правильно классифицированных объектов из их общего числа, так и увеличение доли неправильно классифицированных объектов в общем числе обнаруженных детектором. В случае, когда q составляет 15 и более децибел, работу детектора можно считать хорошей, так как значение точности составляет более 92%, а mAP – более 91%. Доля неверно классифицированных объектов от общего числа обнаруженных при этом не превышает 10%.

При значении q = 10 дБ работу детектора еще можно считать удовлетворительной (значение точности составляет более 85%, mAP – более 82%, доля неверно классифицированных объектов не превышает 18%). Следует

отметить, что сеть, обученная на наборе с q = 10 дБ, характеризуется наибольшей устойчивостью результатов детектирования к изменению отношения сигнал/помеха, так как демонстрирует стабильный показатель mAP около 82% во всем диапазоне значений q = 10...20 дБ. Исходя из результатов, полученных в [14], можно полагать, что и в этом случае обучение на смешанном наборе изображений позволит дополнительно повысить устойчивость и точность сети.

При значениях отношения сигнал/помеха, равных 5 дБ и менее, работу детектора можно считать сорванной. Это хорошо согласуется с результатами, полученными для детектора на основе комбинации алгоритма CFAR и сверточной нейросети VGG-типа. По всей видимости, вывод о том, что отношение сигнал/помеха на радиолокационном изображении должно превышать 5 дБ для уверенного обнаружения объектов военной техники нейросетевыми детекторами, является довольно общим.

Заключение

Полученные результаты свидетельствуют о высоком качестве работы быстродействующего нейросетевого детектора YOLOv4-tiny при решении задачи поиска и классификации объектов военной техники на РЛИ. В беспомеховой обстановке, или при достаточно высоком отношении среднего уровня отметки объекта к уровню окружающего шумового фона (отношение сигнал/помеха 15 и более децибел), значение интегрального показателя mAP составляет более 90%.

По мере уменьшения отношения сигнал/помеха качество работы детектора снижается, и при его значении порядка 5 дБ или ниже становится неудовлетворительным. Эта оценка может быть использована при обосновании требований к энергетическим характеристикам средств помех авиационным и космическим РЛС обзора Земли.

Литература

- Bao W., Huang M., Zhang Y., Xu Y., Liu X., Xiang X. Boosting ship detection in SAR images with complementary pretraining techniques. *ArXiv*. https://arxiv.org/abs/2103.08251
- Amrani M., Bey A., Amamra A. New SAR Target Recognition Based on YOLO and Very Deep Multi-Canonical Correlation Analysis. *ArXiv*. https://arxiv.org/abs/2110.15383
- Kim W., Cho H., Kim J., Kim B., Lee S. YOLO-Based Simultaneous Target Detection and Classification in Automotive FMCW Radar Systems. Sensors. 2020. Vol. 20, 2897. https://doi.org/10.3390/s20102897
- Chang Y.-L., Anagaw A., Chang L., Wang Y.-C., Hsiao C.-Y., Lee W.-H. Ship Detection Based on YOLOv2 for SAR Imagery. Remote Sensing. 2019. Vol. 11, 786. https://doi.org/10.3390/rs11070786
- Zhou L., Wei S., Cui Z., Fang J., Yang X., Ding W. Lira-YOLO: a lightweight model for ship detection in radar images. Journal of Systems Engineering and Electronics. 2020. Vol. 31. No. 5. PP.950–956. https://doi.org/10.23919/JSEE.2020.000063. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9215072
- Cui Z., Tang C., Cao Z., Liu N. D-ATR for SAR Images Based on Deep Neural Networks. Remote Sensing. 2019. Vol. 11, 906. https://doi.org/10.3390/rs11080906
- Чорбаа Н.А., Ле Ань Ту, Толстой И.М. Сравнительный анализ методов детектирования объектов на радиолокационных изображениях при помощи нейронных сетей. Научный результат. Информационные технологии. 2020. T.5. №4. C. 15-25. https://doi.org/10.18413/2518-1092-2020-5-4-0-3
- Gao F., Liu A., Liu K., Yang E., Hussain A. A novel visual attention method for target detection from SAR images. Chinese Journal of Aeronautics. 2019. Vol. 32(8). P. 1946-1958 https://doi.org/10.1016/j.cja.2019.03.021
- Chen Y., Duan T., Wang C., Zhang Y., Huang M. End-to-End Ship Detection in SAR Images for Complex Scenes Based on Deep CNNs. Journal of Sensors. Vol. 2021. https://doi.org/10.1155/2021/8893182

- Wu T.-D., Wang H.-F., Hsu P.-H., Tiong K.-K., Chang L.-C., Chang C.-H. Target Detection and Recognition in Synthetic Aperture Radar Images Using YOLO Deep Learning Methods. 2023 International Conference on Consumer Electronics – Taiwan (ICCE-Taiwan). 2023. PP. 593-594. https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226736. https://ieeexplore.ieee.org/document/10226736
- Zhang T., Zhang X., Ke X., Zhan X., Shi J., Wei S., Pan D., Li J., Su H., Zhou Y., Kumar D. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sensing. 2020. 12. 2997. https://doi.org/10.3390/rs12182997
- Казачков Е.А., Матюгин С.Н., Попов И.В., Шаронов В.В. Обнаружение и классификация малоразмерных объектов на изображениях, полученных радиолокационными станциями с синтезированной апертурой. Вестник Концерна ВКО «Алмаз Антей». 2018. № 1. С. 93-99. https://doi.org/10.38013/2542-0542-2018-1-93-99
- 13. Купряшкин И.Ф., Лихачев В.П. Космическая радиолокационная съемка земной поверхности в условиях помех. Воронеж, Научная книга. 2014. 460 с.
- 14. Купряшкин И.Ф. Детектирование объектов военной техники с использованием сверточной нейронной сети на радиолокационных изображениях, сформированных в условиях шумовых помех. Журнал радиоэлектроники. 2022. №6. https://doi.org/10.30898/1684-1719.2022.6.8

Для цитирования:

Купряшкин И.Ф. Детектирование объектов военной техники на зашумленных радиолокационных изображениях с использованием детектора YOLOv4-tiny. // Журнал радиоэлектроники. – 2025. – №. 2. https://doi.org/10.30898/1684-1719.2025.2.7