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Введение 

Приближение холодной плазмы широко используется при анализе 

характеристик излучения и распространения километровых и более длинных 

волн (диапазоны частот от НЧ до КНЧ – далее кратко НЧ) в ионосфере Земли. 

Характерной особенностью ионосферы с точки зрения генерации и 

распространения НЧ-волн является ее одноосная анизотропия, обусловленная 

присутствием постоянного геомагнитного поля. Показатель преломления таких 

волн может достигать десятков и сотен единиц. Соответственно, значительно 

сокращается длина волны и резко возрастает эффективность излучения антенны. 

Кроме того, пространственное и частотное распределение напряженности поля 

такого источника имеют ярко выраженный резонансный характер [1]. Известно, 

что входной импеданс излучающей рамочной антенны имеет индуктивный 

характер и практически не зависит от параметров ионосферной плазмы, что 

облегчает согласование такой антенны с передатчиком. 

Задача о расчете диаграммы направленности рамочной антенны, 

расположенной в однородной магнитоактивной плазме, может считаться к 

настоящему моменту решенной. Для этой цели используется либо метод 

функции Грина [2,3], либо метод Фурье разложения по плоским волнам [4,5]. 

Получающиеся в результате интегралы от быстро осциллирующих функций 

вычисляются приближенно в дальней зоне источника методом стационарной 

фазы (методом перевала). Результаты таких вычислений имеют, как правило, 

относительно сложный вид, плохо поддающийся наглядной физической 

интерпретации. 

В данной работе предлагается численный алгоритм построения диаграммы 

направленности ионосферной рамочной антенны, причем, эта процедура имеет 

относительно простую физическую и геометрическую интерпретацию. 

Вычисления основаны на результатах работы [5], в которой показано, что 

величина напряженности поля источника в его дальней зоне пропорциональна 

радиусу кривизны поверхности фазового показателя преломления (поверхности 

волновых нормалей) в точке, соответствующей приходящему в точку 
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наблюдения лучу (или лучам, если таких точек несколько). Иными словами, 

зависимость кривизны поверхности волновых нормалей от направления 

волновой нормали в гиротропной среде фактически является функцией 

геометрического преобразования пространства волновых нормалей источника в 

пространство лучей в окрестности точки наблюдения, расположенной в дальней 

зоне. 

Везде в данной работе вычисления проводим в интервале частот f от 1 до 

100 кГц (длины волн 3…300 км). Следует отметить, что указанный интервал 

используется в иллюстративных целях, поскольку в полученных результатах 

отсутствуют явные ограничения на величину частоты волны. Радиус рамки 

a = 10 м, амплитуда синусоидального тока в ней I0 = 100 А. Антенна 

расположена в ионосфере на геомагнитной широте 70º и высоте 200 км над 

поверхностью земли.  

1. Гауссов радиус кривизны поверхности волновых нормалей 

Используем модель холодной многокомпонентной магнитоактивной 

ионосферной плазмы. Считаем, что в окрестности излучателя среда однородна и 

безгранична. Пусть волновая нормаль k  плоской волны составляет с вектором 

геомагнитного поля 0B  угол ψ. Фазовый показатель преломления такой плоской 

волны определяется соотношением: 

0 | |  /n k k= , 

где k0 = ω/c – волновое число, ω = 2πf, c – скорость света в вакууме. Уравнение 

для фазового показателя преломления n имеет вид [6] 

 4 2  0,An Bn C− + =  (1) 

где 

 

2 2

2 2

sin cos ,

sin (1 cos ),

,

A S P

B RL PS

C PRL

 

 

= +

= + +

=

 (2) 

где 
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= − = +

 


 (3) 

Суммирование ведется по сорту k заряженных частиц, составляющих 

плазму, с учетом знака заряда в величинах Yk: 

 Yk ≡ fHk / f ; Xk ≡ (fpk / f)
2, (4) 

где fHk и fpk – гиро- и плазменная частота частицы сорта k = 1, 2, ..., причем, 

значение k = 1 соответствует электронам. Плазменная частота электронов имеет 

вид 

 fpe = (e2Ne / 4π2ε0me)
1/2 ≈ 8.97 Ne

1/2, кГц, (5) 

где Ne измеряется в см-3; e, me – заряд и масса электрона; ε0 – диэлектрическая 

проницаемость вакуума. Для ионов сорта k в формуле (4) следует использовать 

соответствующие значения концентрации, заряда и массы иона. Гирочастота 

электронов 

 fHe = eB0 / 2πme ≈ 876 (1+h / R0)
-3 (1 + 3sin2 Φ)1/2, кГц, (6) 

где R0 ≈ 6370 км – средний радиус Земли, Φ – геомагнитная широта. 

Предполагаем, что в пределах ионосферы величина и направление вектора 

геомагнитного поля 0B  описывается известной дипольной моделью. Решение 

уравнения (1) очевидно: 

 n1,2
2 = {B ± (B2 – 4AC)1/2} / 2A, (7) 

где индексы 1, 2 и знаки «±» соответствуют обыкновенной и необыкновенной 

(«свистовой») волнам. Обе характеристические волны имеют в общем случае 

эллиптическую поляризацию и их свойства зависят от угла ψ. На низких частотах 

в ионосфере и магнитосфере обыкновенная волна испытывает сильное 

затухание, особенно в нижней ионосфере, и ею можно пренебречь. Из уравнения 

(7) видно, что величина n имеет сингулярность при A = 0, которая соответствует 

резонансному углу ψ = ψres такому, что 

 
1/2(tg ) /res P S = − . (8) 

В данной точке ионосферы значение выражения (8) зависит от частоты, и 

существует частота нижнего гибридного резонанса fLHR такая, что при 
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fLHR < f < fHe / 2 подкоренное выражение в (8) положительно, то есть, при ψ → ψres 

имеем μ(ψ) → ∞. При ψ > ψres имеем n = 0 – поперечная волна быстро затухает. 

При f < fLHR резонанс отсутствует, функция n(ψ) конечна всюду; в этом случае 

условно считаем, что ψres = π / 2. 

Для вычисления гауссова радиуса кривизны поверхности n(ψ) 

воспользуемся известными результатами из дифференциальной геометрии. 

Выберем декартову систему координат (x, y, z) так, чтобы начало системы 

совпало с точкой расположения источника, а ось z была направлена вдоль 

направления вектора 
0B  в этой точке. Оси x и y выберем произвольно так, чтобы 

получилась правая тройка. Пусть азимутальный угол φ расположен в плоскости 

(x, y) и отсчитывается от оси x против часовой стрелки. Тогда радиус-вектор 

точки поверхности n(ψ) имеет вид 

    ,sin cos ; si o, , n sin ; c sn n nr x y z     = =  (9) 

что при n = const совпадает со стандартной параметризацией сферы в 

пространстве. 

Для вычисления коэффициентов первой квадратичной формы поверхности 

необходимы первые частные производные (9) по φ ( r ) и по ψ ( r ), которые 

составляют базис в касательном пространстве поверхности: 

 

 sin sin ; sin cos ; 0 ,

cos cos sin cos ;

cos sin sin sin ; ,

 

s

 

in cos

     r n n

n n

r n n

n n





   

   

   

 

= −

− + 
 

= + 
 − + 

 (10) 

где n  – первая производная функции n(ψ). Из уравнений (10) получим 

коэффициенты первой квадратичной формы: 

 

2 2

2 2

( , ) sin ,

( , ) 0,

( , ) ,

E r r n

F r r

G r r n n

 

 

 

= =

= =

= = +

 (11) 
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где круглые скобки обозначают скалярное произведение векторов.  

Для вычисления производных функции n(ψ) проще использовать не выражение 

(7), а неявное исходное уравнение (1): 

 

2 2/ ( ) / 2(2 ),

( )sin 2 ,

( )sin 2 ,

w n n B A n An B

A S P

B RL PS





   = − −

 = −

 = −

 (12) 

Далее найдем нормированный вектор m  внешней нормали к поверхности 

n(ψ): 

 
2 1/2

(sin cos )cos ;
,

(sin cos )sin ; / (1 ) ,
| , |

cos sin

w
r r

m w w
r r

w

 

 

  

  

 

− 
    = − = − + 
     + 

 (13) 

где квадратные скобки обозначают векторное произведение. Кроме того, 

вычислим вторые частные производные (9): 

 

 sin cos ; sin sin ; 0 ,

(cos sin )sin ;
,

(co

    

s sin )cos   ; 0

r n

w
r n

w





   

  

  

= −

+ 
= −  

− + 

 (14а) 

 

(sin 2 cos sin )cos ;

(sin 2 cos sin )sin ;

cos 2 sin cos

n
w

n

n
r n w

n

n
w

n



   

   

  

 
− − 

 
 

= − − − 
 

 
+ − 

 

, (14б) 

где n  – вторая производная функции n(ψ). Используем (13) и (14) для 

вычисления коэффициентов второй квадратичной формы: 

 

2 1/2

2 2 1/2

( , ) sin (sin cos )(1 ) ,

( , ) 0,

( , ) (1 2 )(1 ) .

L r m n w w

M r m

n
N r m n w w

n







   −

−

= = − − +

= =


= = − + − +

 (15) 
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Для вычисления n  используем уравнения (1) и (12): 

 

2

2 2 2

2

1
( ) ( 3 ) ( 2 )

2 ,

2

B B B
A A w A w

n n n n
Bn

A
n

 
 − + − − +

=

−

 (16) 

где 

2( )cos2 ,

2( )cos2 .

A S P

B RL PS





 = −

 = −
 

Выражение (16) представлено в форме, удобной для вычислений. 

Из соотношений (11) и (15) получаем формулы для главных криви́зн λ1,2 

поверхности n(ψ): 

21     / ,/ ;E GL N = =  

и окончательно получим следующее относительно простое соотношение для 

вычисления гауссова радиуса кривизны Rg поверхности волновых нормалей: 

 
2

2 2 2 2

2
(1 ctg )(1 2 / )(1 ) ,g

g

n
n K w w n n w

R
 −= = − + − +  (17) 

где Kg = λ1λ2 – гауссова кривизна поверхности. В частном случае ψ = 0 в силу 

осевой симметрии поверхности волновых нормалей имеем 

1 2 ,n n  = = − +  

что устраняет неопределенность в выражении (17). 

2. Диаграмма направленности рамочной антенны 

Пусть α – угол между направлениями луча (совпадает с направлением 

вектора m  (13) нормали к волновой поверхности) и волновой нормали k ;  

β – угол между направлением луча и вектором 0B . Углы положительны по 

часовой стрелке. Для этих углов известно, что 

 ,tg w = .  = −  (18) 

Рассмотрим малую площадку ΔS в дальней зоне рамочной антенны такую, 

что направление луча в центре площадке перпендикулярно к ней. Тогда лучи, 

«освещающие» эту площадку образуют телесный угол 
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 2/ .r gS R =   (19) 

Отметим, что вершина этого телесного угла, вообще говоря, не совпадает 

с точкой расположения источника. В пространстве волновых нормалей 

соответствующий телесный угол имеет вид 

 2 2 1/2      ,cos / ; cos (1  )k S n w  − = = +  (20) 

и его вершина совпадает с точкой расположения источника. Исключим ΔS из 

уравнений (19), (20) и получим связь величин ΔΩr,k в заданной точке 

пространства: 

 
2

2
/ cos .r k

g

n

R
 =   (21) 

Пусть антенна излучает мощность Pизл. Согласно результатам работы [5] 

будем считать, что в пространстве волновых нормалей источник излучает так же, 

как в свободном пространстве. Предположим, что ось рамки параллельна оси 

OZ, то есть, направлению 0B , тогда из закона сохранения энергии получим 

 0( ) ( ) ,
4 4

изл изл
r k

P P
 

 
  =    (22) 

где Γ и Γ0 – угловая диаграмма направленности антенны для лучей и волновых 

нормалей соответственно, причем Γ0 = 1.5×sin2ψ для рамки параллельной 

ориентации. Из (21) и (22) получим 

 

2

0 2
cos .

gR

n
 =   (23) 

Уравнение (23) является формальным выражением того факта, что угловая 

диаграмма направленности элементарного источника в магнитоактивной плазме 

определяется гауссовым радиусом кривизны поверхности волновых нормалей. 

Для проведения дальнейших расчетов выберем для модели ионосферы 

дневные условия, равноденствие и среднюю активность солнца. Из данных 

работы [7] для высоты 200 км получим: Ne = 3.55105 см-3, fpe = 5.35 МГц, 

fHe = 1.53 МГц. Пять положительных ионов N, O, N2, NO, O2 имеют доли 0.003, 

0.508, 0.017, 0.315 и 0.15 соответственно. В этом случае fLHR ≈ 7.48 кГц. 
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Выберем два значения частоты f = 1 и 100 кГц. На рис. 1 приведены 

зависимости величины nz = n×cosψ от величины nx = n×sinψ для указанных 

частот (кривые 1 и 2 соответственно). Кривые нормированы на значения n при 

ψ = 0 для каждой из частот и являются частью сечения поверхности волновых 

нормалей плоскостью, содержащей ось OZ. Эта ось является осью вращательной 

симметрии поверхности, поэтому вся кривая сечения полностью 

восстанавливается по своему первому квадранту. Для этого кривые на рис. 1 

следует сначала зеркально отразить влево относительно оси nz, а затем 

полученную кривую зеркально отразить вниз относительно оси nx. 

 

Рис. 1. Фазовый показатель преломления для частот 1 кГц (1) и 100 кГц (2). 

Для кривой 1 выполняется неравенство f < fLHR, поэтому эта кривая не 

имеет резонансных особенностей и всюду замкнута. Для кривой 2, напротив, 

f > fLHR, поэтому эта кривая разомкнута и имеется резонансное направление 

(штриховая прямая на рис. 1). Числовые значения на осях для наглядности 

изображения приведены в разных масштабах. На самом деле на частоте 100 кГц 

имеем ψres ≈ 86.1°, то есть угол между штриховой прямой и осью абсцисс равен 

всего ~ 3.9°. 
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На рис. 2 приведены зависимости величины гауссовой кривизны волновой 

поверхности n(ψ) от угла ψ для тех же двух частот 1 кГц (кривая 1, значения по 

оси ординат следует умножить на 10-5) и 100 кГц (кривая 2, множитель 10-3). 

Горизонтальная прямая соответствует значению Kg = 0. Эта прямая пересекает 

кривые 1 и 2 в точках, соответствующих точкам перегиба зависимости n(ψ). 

 

Рис. 2. Зависимость величины гауссовой кривизны поверхности волновых 

нормалей от угла ψ для частот 1 (1) и 100 кГц (2). 

Для кривой 1 таких точек перегиба две (см. рис. 1) при значениях ψs ≈ 56.3° 

и ψ2 ≈ 88.0°. Для кривой 2 такая точка одна при ψs ≈ 49.9°. Кроме того, при f > fLHR 

на кривой n(ψ) существует точка ψG (соответствует минимуму на кривой 2 на 

рис. 1), которой соответствует направление луча, параллельное 0B  (β = 0). Такой 

угол называется углом Жандрена [8] и для рис. 1 имеем ψG ≈ 82.2°, что близко к 

резонансному углу. Точка перегиба при ψ ~ 50° существует для любой частоты 

из рассматриваемого интервала 1…100 кГц; соответствующий угол луча β 

вычислим из соотношения (18), он традиционно называется углом Стори (βs). 

На рис. 3 приведены зависимости углов βs и ψres от частоты. Напомним, что 

при f < fLHR условно считаем ψres = 90°. Из рисунка видно, что при f > fLHR 

величины указанных углов изменяются относительно слабо, а их зависимость от 
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частоты носит практически линейный характер. Из кривой 2 на рис. 1 видно, что 

при ψ → ψres угол луча стремится к относительно малой величине β → 90° – ψres. 

 

Рис. 3. Зависимость величины угла Стори βs (1) и резонансного угла ψres (2) от 

частоты. Штриховая вертикаль соответствует значению f = fLHR. 

 

Рис. 4. Диаграмма направленности элементарной рамочной антенны в 

зависимости от угла ψ волновой нормали. 

На рис. 4 приведена зависимость Γ(ψ) из уравнения (23) для частот 1 (1) и 

100 кГц (2). Для кривой 2 вертикальная штриховая линия обозначает угол ψres,  
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а вертикальная штрихпунктирная линия – угол Жандрена ψG. Обе кривые 

демонстрируют особенности на углах Стори. Кривая 1 имеет особенность на 

второй точке перегиба, а кривая 2 – при ψ ~ ψG. 

Пусть наблюдатель находится в дальней зоне источника на расстоянии R 

от него. Этот наблюдатель «видит» луч, который имеет некоторый угол β с осью 

координат OZ. В силу азимутальной симметрии задачи выражение (23) следует 

переписать как функцию переменной β, поскольку функция β(ψ) (18) известна и 

приведена на рис. 5. Штриховой отрезок обозначает резонансный угол для 

кривой 2. Горизонтальная прямая соответствует значению β = 0. Качественно 

характер этих зависимостей очевиден из рис. 1. Кривые β(ψ) антисимметричны, 

то есть, β(-ψ) = -β(ψ), поэтому соответствующая часть кривых при ψ < 0 не 

приведена. 

 

Рис. 5. Зависимость угла луча β от угла волновой нормали ψ  

для частот 1 (1) и 100 кГц (2). 

Из рисунка видно, что зависимость ψ(β), вообще говоря, не однозначна,  

а именно, заданному значению угла β прихода луча в точку наблюдения может 

соответствовать несколько значений угла ψ в разложении поля источника по 
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плоским волнам в пространстве волновых нормалей. Из рисунка следует, что 

таких значений может быть от 0 до 3-х в зависимости от значения β и частоты 

волны. Например, при f > fLHR (кривая 2 на рис. 5) при β = 0 имеем три 

возможных значения углов ψ, а при β > βs таких значений нет, то есть, излучение 

вне так называемого конуса Стори невозможно в лучевом приближении. 

Пусть данному значению β соответствует q значений угла ψ. Тогда 

соотношение (23) следует переписать в виде 

 

2

0 2
1

( ) cos ,
q

gi

i

i i

R

n
 

=

 =   (24) 

где отмеченные индексом i величины вычисляются для своего угла ψ = ψi. 

С вычислительной точки зрения для поиска всех корней ψi вместо 

уравнений (18) удобнее использовать эквивалентное уравнение 

 tg tg (1 tg tg ) 0,w   − − + =  (25а) 

а в случае близости ψ к 90° – уравнение 

 ( )
1/2

21 cos cos sin 0.w w  + − − =  (25б) 

В данной работе для поиска всех корней подобных уравнений 

используется численная процедура изоляции корней на отрезке (-ψres, ψres) с 

последующим применением метода бисекций. В случае f < fLHR (кривая 1 на 

рис. 5) отрицательные корни ψi отсутствуют и для поиска используется 

полуинтервал [0, ψres). 

На рис. 6 представлена зависимость Γ(β) при f < fLHR (кривая 1 на рис. 1), 

разбитая на три ветви, соответствующие однозначным участкам функции β(ψ). 

Штриховая линия на рис. 6 соответствует углу Стори βs; штрихпунктирная линия 

– углу β второй точки перегиба ψ2. Кривая 1 соответствует углам ψ   [0, ψs); 

кривая 2 – углам ψ   (ψs, ψ2); кривая 3 – углам ψ   (ψ2, π/2] (см. описание под 

рис. 2). 
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Рис. 6. Угловая лучевая диаграмма направленности элементарной рамочной 

антенны для частоты 1 кГц в виде набора кривых, соответствующих ветвям 

однозначности функции ψ(β). 

Аналогичные кривые для случая f > fLHR приведены на рис. 7. Штриховая 

линия соответствует углу Стори βs; штрихпунктирная линия – углу β  

вблизи резонанса (β ≈ 90° – ψres). Здесь кривые 1-3 соответствуют участкам  

[0, ψs); (ψs, ψG) и (ψG, ψres). Как и следовало ожидать, в этом случае Γ(β > βs) = 0. 

Кроме того, кривая 3, соответствующая малым отрицательным значениям β, 

зеркально отражена относительно оси ординат и практически совпадает с 

участком кривой 2 между осью ординат и штрихпунктирной линией. 

Особенность при β = 0 соответствует ψ = ψG. Аналогичное представление 

зависимости Γ(β) в виде ряда ветвей было использовано ранее в работе [4]. 
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Рис. 7. Угловая лучевая диаграмма направленности элементарной рамочной 

антенны для частоты 100 кГц в виде набора кривых, соответствующих ветвям 

однозначности функции ψ(β). 

Полная угловая диаграмма направленности рамочной антенны может быть 

вычислена из уравнения (24). На рис. 8 приведены результаты таких расчетов для 

частот 1 кГц (сплошная кривая) и 100 кГц (штриховая кривая). Величины пиков 

искусственно обрезаны на уровне Γ = 103. Основные особенности полученных 

кривых уже фактически были обсуждены выше. 

Кратко опишем процедуру вычисления угловой диаграммы 

направленности рамочной антенны. 

1) Задаем параметры среды, частоту излучения и точку наблюдения, то 

есть, угол β между направлением на источник и направлением локального 

вектора геомагнитного поля. 

2) Используя соотношения (1-7) и (12), численно решаем нелинейное 

уравнение (25) и находим набор углов ψi, соответствующих заданному углу β. 
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Рис. 8. Угловая диаграмма направленности в дальней зоне элементарной 

рамочной антенны, расположенной в магнитоактивной плазме. 

Если таких углов нет, то полагаем результат Γ = 0 и завершаем процедуру. 

Заметим, что поскольку нас интересует только распространяющаяся (свистовая) 

мода в плазме, то выражение (7) удобнее записать в виде 

n2 = {B + sgn(B)×D1/2} / 2A, 

D = (RL – PS)2sin4ψ + P2(R – L)2cos2ψ, 

где sgn(x) обозначает функцию, имеющую значения 1, 0 или -1 в соответствии со 

знаком аргумента x. 

3) Для каждого найденного в п. 2 угла ψi находим величину Γi, пользуясь 

уравнениями (16), (17) и (23). 

4) Вычисляем результат Γ как сумму полученных в п. 3 величин Γi. 

Процедура закончена. 

В качестве обсуждения сделаем два замечания. 

1) Приведенная выше процедура вычисления Γ содержит неявное 

ограничение на выбор частоты волны и параметров плазмы, поскольку 
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предполагаем, что существует только одна распространяющаяся мода в среде, и 

один из двух возможных корней (7) можно отбросить. Это ограничение не 

является принципиальным. Если в однородной безграничной холодной 

магнитоактивной плазме обе независимые моды являются 

распространяющимися, то для каждой из них справедлива приведенная выше 

процедура, а полный результат есть просто сумма величин Γ для обеих мод. 

2) Ранее в литературе отмечалось [9], что в магнитоактивной плазме 

понятие дальней зоны не имеет такой однозначный смысл, как в изотропной 

среде. Действительно, в изотропной среде поверхность волновых нормалей 

является сферой и из соотношений (17) и (21) видно, что Rg = n, и ΔΩr = ΔΩk,  

то есть, соотношение (23) приобретает тривиальный вид Γ = Γ0, поскольку k m  

и α = 0. В анизотропной среде, как отмечалось выше, вершина телесного угла 

ΔΩk в пространстве волновых нормалей совпадает с точкой расположения 

источника. В то же время, из-за переменной кривизны поверхности n(ψ), 

вершина лучевого телесного угла ΔΩr в окрестности точки наблюдения в дальней 

зоне источника не совпадает, вообще говоря, с точкой расположения источника. 

Более того, в направлениях β вблизи особенностей кривой Γ(β), то есть, вблизи 

точек ψs, ψ2 или ψG на кривой n(ψ) (см. рис. 1, 2), можно получить 

местоположение вершины лучевого телесного угла на любом расстоянии от 

реального источника, в том числе, вблизи точки наблюдения, как бы далеко она 

не находилась. В этих направлениях β классические условия дальней зоны не 

выполняются. Приведенное наглядное качественное объяснение этого эффекта 

совпадает с выводами работы [9]. 

Заключение 

Получены аналитические выражения для коэффициентов первой и второй 

квадратичной формы для произвольной точки на поверхности волновых 

нормалей плоской электромагнитной волны в холодной однородной 

многокомпонентной магнитоактивной плазме (ионосфере) без явных 

ограничений на частоту и направление распространения волны. 
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Разработана относительно простая и наглядная вычислительная 

процедура, позволяющая строить угловую диаграмму направленности по 

мощности для любого источника малых (по сравнению с длиной волны) 

размеров, для которого известна его диаграмма направленности в свободном 

пространстве. 

В качестве иллюстрации приведены результаты расчета диаграммы 

направленности элементарной рамочной антенны в интервале частот  

1…100 кГц. 

Финансирование: работа выполнена в рамках государственного задания 
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