УДК 538.958, 546.03

# ИССЛЕДОВАНИЕ δ - ЛЕГИРОВАННЫХ n-i-p-i-n СТРУКТУР GaAs МЕТОДОМ СПЕКТРОСКОПИИ ФОТООТРАЖЕНИЯ

Л. П. Авакянц<sup>1</sup>, П. Ю. Боков<sup>1</sup>, И. В. Бугаков<sup>1</sup>, Т. П. Колмакова<sup>2</sup>, А. В. Червяков<sup>1</sup>

# <sup>1</sup> физический факультет МГУ имени М.В. Ломоносова, кафедра общей физики <sup>2</sup> ОАО «Оптрон», Москва

Получена 15 января 2010 г.

Аннотация. Методом спектроскопии фотоотражения исследованы полупроводниковые nipin-структуры арсенида галлия с дельта-легированными Из осцилляций Франца-Келдыша слоями р-типа. анализа определены напряженности встроенных электрических полей и энергии межзонных переходов структуры. Обнаружено увеличение энергии межзонного перехода в области дельта-легирования, что объясняется эффектом Бурштейна-Мосса вследствие фотогенерации носителей.

Ключевые слова: гетеоструктуры, фотоотражение, дельта-легирование.

## Введение

Полупроводниковые гетероструктуры, полученные путём чередования тонких полупроводниковых слоев, отличающихся по типу легирования, (pinдиоды и транзисторы, nipi-кристаллы) являются основой для создания целого ряда приборов СВЧ техники и оптоэлектроники. Наиболее распространенными материалами для этих приборов являются кремний и арсенид галлия. При этом в быстродействующих оптоэлектронных и СВЧ устройствах несомненными преимуществами, с точки зрения времени жизни неравновесных носителей тока и их подвижности, обладает арсенид галлия.

### <u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N 1, 2010</u>

Особый интерес представляют структуры с дельта-легированными слоями [1]. В этих системах примесь локализована в слое толщиной несколько нм, что обеспечивает пространственное разделение носителей заряда и ионизированной примеси, и приводит к увеличению их подвижности. Зонную диаграмму таких структур можно формировать, задавая необходимые параметры в ходе Кроме того, потенциал объемного эпитаксиального роста. заряда, a. следовательно, и зонную структуру можно изменять путем электрического или оптического возбуждения дельта-слоя. Это делает дельта-легированные структуры интересными с точки зрения создания перестраиваемых (внешним потенциалом или излучением) оптоэлектронных приборов [1, 2, 3], в том числе, приборов терагерцевого диапазона [4].

В настоящей работе приводятся результаты исследований методом спектроскопии фотоотражения полупроводниковых дельта-легированных n-i-p-i-n структур на основе GaAs, применяемых для изготовления биполярных транзисторов.

# Образцы и методика эксперимента

Исследуемые образцы выращивались методом газофазной эпитаксии. Рост происходил на полуизолирующих подложках GaAs типа АГП с ориентацией поверхности (100). Образцы представляли собой структуры типа n+-i-δp-i-n+.



Рис.1 Структура образцов.

На рис. 1 схематически изображена структура исследуемых образцов: они состояли из слоев GaAs n-типа, слоев GaAs с собственной проводимостью i-GaAs и области дельта-легирования, созданной внедрением примеси Be. Толщина области дельта легирования не превышала 20 нм. Толщина слоя GaAs с собственной проводимостью составила 400 нм, n+ областей -500 нм, n=5·10<sup>18</sup> см<sup>-3</sup>.

Исследуемые образцы имели технологические номера № 1205 и № 1206. Они отличались слоевой концентрацией легирующей примеси в области дельта-легирования: в образце № 1205 p=1.6·10<sup>12</sup> см<sup>-2</sup>, в образце № 1206 p=2·10<sup>12</sup> см<sup>-2</sup>.

Спектры фотоотражения регистрировались при комнатной температуре на установке [5], с использованием двойного монохроматора. Модуляция отражения осуществлялась Не-Ne лазером (длина волны 632.8 нм, мощность 5 мВт) на частоте 370 Гц.

# Результаты и обсуждение

На рис. 2 приведены спектры фотоотражения образца № 1206. В спектре, в области энергий от 1.4 – 1.7 эВ присутствуют осцилляции Франца-Келдыша двух различных периодов, и линия в области 1.8 эВ, связанная с переходом из зоны проводимости в спин-орбитально отщепленную подзону валентной зоны.

Разделение наблюдающихся в спектрах фотоотражения осцилляций Франца-Келдыша разных периодов производилось с помощью метода фазочувствительного анализа [6]. Для этого измерялись спектры фотоотражения с предустановкой фазы нановольтметра в 0 рад (рис. 2 снизу) и  $\pi/2$  (рис. 2 посередине) и путем варьирования параметра  $\varphi_r$  в выражении (1) подбирался такой вид спектра (рис. 2 сверху), в котором возможно разделение осцилляций:

$$\frac{\Delta R(E,\varphi_r)}{R} = \frac{\Delta R(E,0)}{R} \cos(\varphi_r) + \frac{\Delta R(E,\pi/2)}{R} \sin(\varphi_r) \qquad (1)$$

где  $\frac{\Delta R(E,0)}{R}$   $u \frac{\Delta R(E,\pi/2)}{R}$  - спектры фотоотражения, зарегистрированные в фазе с модулирующим излучением и с отставанием от него на  $\pi/2$ , E – энергия зондирующего излучения.



Рис. 2 Спектры фотоотражения образца № 1206, зарегистрированные в фазе с модулирующим излучением (снизу), с запаздыванием на 90° относительно модулирующего излучения (посередине) и рассчитанный в рамках модели (1) фазочувствительного анализа (сверху). ОФК1 и ОФК2 – короткопериодные и длиннопериодные осцилляции соответственно.

В результате обработки экспериментальных данных в модели (1), получен спектр фотоотражения (рис. 2, верхний спектр), в котором видно разделение осцилляций Франца-Келдыша короткого и длинного периодов.

Короткопериодные осцилляции расположены в области энергий в 1.4 - 1.5 эВ, длиннопериодные в области 1.5 - 1.7 эВ.

В работе [7] предложено простое приближение для описания среднеполевых спектров фотоотражения:

$$\frac{\Delta R}{R} \propto \exp\left(-\frac{2\Gamma \cdot \left(\hbar\omega - E_g\right)^{\frac{1}{2}}}{\left(\hbar\Omega\right)^{\frac{3}{2}}}\right) \cdot \frac{\Gamma}{\left(\hbar\omega - E_g\right)} \cdot \cos\left[\frac{4}{3} \cdot \left(\frac{\hbar\omega - E_g}{\hbar\Omega}\right)^{\frac{3}{2}} + \frac{\pi(d-1)}{4}\right] (2)$$

где  $\hbar\omega$  - энергия зондирующего излучения,  $E_g$  – энергия фундаментального перехода, d – размерность критической точки (в случае GaAs, для прямых межзонных переходов в центре зоны Бриллюэна d = 3 [7].),  $\Gamma$  – феноменологический параметр уширения,  $\hbar\Omega$  - электрооптическая энергия:

$$\hbar\Omega = \left(\frac{e^2 \cdot E_S^2 \cdot \hbar^2}{8 \cdot \mu^3}\right)^{1/3} (3)$$

здесь µ - приведенная межзонная эффективная масса:

$$\frac{1}{\mu} = \frac{1}{m_e^*} + \frac{1}{m_h^*} (4)$$

 $m_e^*$ ,  $m_h^*$  - эффективные массы электрона в зоне проводимости и дырки в валентной зоне,  $E_S$  – напряженность встроенного электрического поля, e – заряд электрона.

Как видно из (2), положения экстремумов осцилляций Франца-Келдыша (*ħ*ω), определяются соотношением:

$$(\hbar\omega)_{j} = \hbar\Omega \cdot (F_{j}) + E_{g}, j=1, 2, 3 \quad (5)$$

#### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N 1, 2010

Где 
$$F_j = \left[ 3 \cdot \pi \frac{j - \frac{1}{2}}{2} \right]^{2/3}$$
 (6).

Зависимость  $(\hbar\omega)_j$  от  $F_j$  - есть прямая линия с наклоном  $\hbar\Omega$  и точкой пересечения оси ординат, равной  $E_g$ .



Рис.3 Построение Аспнеса и Штунды (2-4) для образца № 1206. ОФК1 и ОФК2 – короткопериодные и длиннопериодные осцилляции соответственно. Числа у экспериментальных точек – номера экстремумов осцилляций.

На рис. 3 приведены полученные зависимости (5) для образца № 1206, с помощью которых были вычислены напряженности встроенного электрического поля и энергии межзонного перехода, эти же параметры вычислены из спектров фотоотражения образца № 1205 (см. таблицу 1).

Из таблицы видно, что области с большей напряженностью встроенного электрического поля, соответствует большая энергия межзонного перехода, что не может быть объяснено эффектом Франца-Келдыша, согласно которому

#### ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, N 1, 2010

увеличение напряженности электрического поля должно приводить к уменьшению энергии перехода. Для объяснения указанных особенностей рассмотрим диаграмму зонной структуры исследуемых образцов при воздействии на них модулирующего излучения (рис. 4).

Таблица 1. Напряженности встроенного электрического поля и энергии межзонных переходов для образцов №1205 и №1206

| Номер   | Напряженность встроенного  |       | Энергия межзонного |           |
|---------|----------------------------|-------|--------------------|-----------|
| образца | электрического поля, кВ/см |       | перехода, эВ       |           |
|         | ОФК1                       | ОФК2  | ОФК1               | ОФК2      |
| 1206    | 17±1                       | 90±5  | 1.41±0.02          | 1.47±0.02 |
| 1205    | 32±1                       | 120±5 | 1.43±0.02          | 1.47±0.06 |

При фотогенерации носителей под действием лазерного излучения, в первую очередь происходит закачка электронов в зону проводимости из под уровня Ферми в области дельта-легирования.

В результате этого, в валентной зоне и зоне проводимости образуются квазиуровни Ферми, соответствующие неравновесному распределению носителей. Дальнейшая рекомбинация носителей происходит с уровня энергии, соответствующего положению квазиуровня Ферми для электронов, на уровень энергии, соответствующий квазиуровню Ферми для дырок.

Таким образом, в данной структуре наблюдается эффект аналогичный эффекту Бурштейна-Мосса: при переизлучении электроны из зоны проводимости могут попадать на образовавшиеся дырки в валентной зоне, в этом случае энергия перехода оказывается больше ширины запрещенной зоны GaAs (1.42 эВ при комнатной температуре [8]). Данный переход соответствует области дельта легирования, то есть области с большей напряженностью встроенного электрического поля.



Рис. 4 Схема зонной диаграммы исследуемых образцов при воздействии на них модулирующего излучения. Красной стрелкой изображен переход, соответствующий большей величине встроенного поля. Области ОФК1 и ОФК2 – источники короткопериодных и длиннопериодных осцилляции соответственно.

## Заключение

Методом спектроскопии фотоотражения исследованы полупроводниковые n-i-p-i-n структуры на основе арсенида галлия с дельталегированными слоями p-типа, применяемые для изготовления биполярных транзисторов.

В спектрах фотоотражения исследуемых образцов обнаружено два типа осцилляций Франца-Келдыша, соответствующих двум областям встроенного электрического поля: в области дельта-легирования напряженность встроенного электрического поля составляет 119 кВ/см и 96 кВ/см, в области п-GaAs 32 кВ/см и 17 кВ/см для образцов № 1205 и 1206 соответственно.

Анализ осцилляций Франца-Келдыша показал, что области с большей напряженностью встроенного электрического поля соответствует межзонный переход с большей энергией. Это связано с тем, что в области дельталегирования межзонный переход происходит между дном зоны проводимости и уровнем энергии, положение которого определяется квазиуровнем Ферми для дырок, возникающим в результате фотогенерации носителей.

## Список литературы

- 1. Херман М. Полупроводниковые сверхрешетки. М.:Мир. 1983.
- 2. Sciana B., Sek G., Misiewicz J. Et al. // Materials science-Poland. 2008. 26. P. 71.
- 3. *Harris J.J.* // J. Mat. Scie.: materials and electronics. 1993. 4. p. 93.
- Cechaviius B., Kavaliauskas J., Krivaite G. et al. // Physica status solidi (c) 2007.
   204. p. 412.
- 5. Авакянц Л.П., Боков П.Ю., Червяков А.В. // ЖТФ 2005. **75**. с. 66Kavaliauskas *J.; Krivaite G.* // Physica status solidi. 2008. **245** p. 82.
- 6. Alperovich V.L. Jaroshevich A.S., Scheibler H.E. et al. // Sol. St. Electr. 1994. 37.
  p. 657.
- 7. Aspnes D.E., Shtudna A.A. // Phys Rev B. 1973. 7. p. 4605.
- 8. Pavesi L., Guzzi M. // J. Appl. Phys. 1994. 75. p. 4779.