Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 1
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.1.10

UDC 51-74:537.2

 

Study of methods for constructing adaptive meshes for quasi-static analysis of multiwire transmission lines by the method of moments

 

A. E. Maksimov, S. P. Kuksenko

Tomsk State University of Control Systems and Radioelectronics, 40 Lenin avenue, Tomsk, Russia, 634050

 

The paper was received on January 23, 2021

 

Abstract. The features of the quasi-static analysis of multiconductor transmission lines by the method of moments, based on the calculation of the matrices of the primary per-unit-length parameters of the line, are described. A brief overview of methods for adaptive mesh refinement is given. Comparison of their efficiency is carried out on the example of calculating capacitive matrices of various multiconductor transmission lines. The optimal values of the parameters methods which reduce computation costs are determined. It is shown that their use gives a significant increase in performance in the multivariate analysis of multiconductor transmission lines relatively to fine uniform meshes.

Key words: multiconductor transmission lines, adaptive mesh, per-unit-length parameters, method of moments.

References

1.     FasterCap – Fast field solvers [online]. 22.01.2021. Available at: http://www.fastfieldsolvers.com

2.     FEMM – Finite element method magnetics [online]. 22.01.2021. Available at: www.femm.info

3.     Zhou Y., Li Z., Shi W. Fast capacitance extraction in multilayer, conformal and embedded dielectric using hybrid boundary element method. 44th ACM / IEEE Design Automation Conference. 2007. P. 835–840.

4.       Samarskii A.A., Mikhailov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery. [Mathematical modeling: Ideas. Methods. Examples]. Moscow, Fizmatlit Publ., 2005. 320 p. (In Russian)

5.       Bermúdez A., Gómez D., Salgado P. Mathematical models and numerical simulation in electromagnetism. Cham/Heidelberg/New York/Dordrecht/London: Springer. 2014. 432 p.

6.       Grigor`ev A.D. Metody vychislitel`noi elektrodinamiki. [Methods of computational electrodynamics]. Moscow, Fizmatlit Publ. 2013. 430 p. (In Russian)

7.       Maiti C.K. Computer aided design of micro- and nanoelectronic devices. Singapore: World Scientific Publishing Company. 2016. 455 p.

8.       Zabolotskii A.M., Gazizov T. R. Vremennoi otklik mnogoprovodnykh linii peredachi. [Time response of multiconductor transmission lines]. Tomsk, Tomsk State University. 2007. 152 p. (In Russian)

9.       Bhatti A.A. A computer based method for computing the N-dimensional generalized ABCD parameter matrices of N-dimensional systems with distributed parameters. The twenty-second southeastern symposium on system theory (Cookeville, USA). 1990. P.590–593.

10.  Shafieipour M., de Silva J., Kariyawasam A. et al. Fast computation of the electrical parameters of sector-shaped cables using single-source integral equation and 2D moment-method discretization. Proceeding of International Conference on Power Systems Transients (IPST). 2017. P.1–6.

11.  Djordjevic A.R., Sarkar T.K., Rao S.M. Analisis of finite conductivity cilindrical conductors exited by axially–independent TM electromagnetic field. IEEE Transactions on Microwave Theory and Techniques. 1985. Vol.MTT–33. P.960–966.

12.  Pant S., Chiprout E. Power grid physics and implications for CAD. Proceedings of the 43rd Design Automation Conference (DAC). 2006. P.199–204.

13.  Paul C.R. Analysis of Multiconductor Transmission Lines. Hoboken, New Jersey: John Wiley and Sons. 2008. 800 p.

14.  Gazizov T.R. Umen`shenie iskazhenii elektricheskikh signalov v mezhsoedineniyakh. [Reducing distortion of electrical signals in interconnects]. Tomsk, NTL Publ. 2003. 212 p. (In Russian)

15.  Bazdar M.B., Djordjevic A.R., Harrington R.F. et al. Evaluation of quasi-static matrix parameters for multiconductor transmission lines using Galerkin's method. IEEE Transactions on Microwave Theory and Techniques. 1994. Vol.42. No.7. P.1223–1228.

16.  Rao S.M., Sarkar T.K., Harrington R.G. The electrostatic field of conducting bodies in multiple dielectric media. IEEE Transactions on Microwave Theory and Techniques. 1984. Vol.32. No.11. P.1441–1448.

17.  Scheinfein M.R., Palusinski O.A. Methods of calculation of electrical parameters for electronic packaging applications. Transactions of the International Society for Computer Simulation. 1987. Vol.4. P. 187–254.

18.  Kechiev L.N. Proektirovanie pechatnykh plat dlya tsifrovoi bystrodeistvuyushchei apparatury. [Design of printed circuit boards for digital high-speed equipment]. Moscow, OOO «Gruppa IDT». 2007. 616 p. (In Russian)

19.  Yang L., Guo X., Wang Z. An efficient method MEGCR for solving systems with multiple right-hand sides in 3-D parasitic inductance extraction. Proceedings of the Design Automation Conference. 2004. P.702–706.

20.  Kuksenko S.P., Ahunov R.R., Gazizov T.R. Choosing order of operations to accelerate strip structure analysis in parameter range. Journal of Physics: Conference Series. 2018. Vol.2015. No.3. P.1–6.

21.  Lebedev A.S., Liseikin V. D., Khakimzyanov G.S. Development of methods for constructing adaptive meshes. Vychislitel`nye tekhnologii [Computing technologies]. 2002. Vol.7. No.3. P.29–43. (In Russian)

22.  Fusco V. Microwave circuits. Analysis and Computer-Aided Design.  Prentice Hall; 1987.

23.  Rylander T., Ingelstrom P., Bondeson A. Computational electromagnetics. New York: Springer. 2013. 286 p.

24.  Meyer F.J., Davidson D.B. Adaptive-mesh refinement of finite-element solutions for two-dimensional electromagnetic problems. IEEE Antennas and propagation. 1996. Vol.37. No.5. P.77–83.

25.  Das A., Nair R.R., Gope D. Efficient adaptive mesh refinement for MoM-based package-board 3D full-wave extraction. IEEE 22nd. Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS). 2013. P.239–242.

26.  Kim S.K., Peterson A.F. Correlation analysis of error estimators for the EFIE. IEEE International Symposium on Antennas and Propagation (APSURSI). 2016. P. 315–316.

27.  Lee W.H., Kim T.-S., Cho M.H. et al. Content-adaptive finite element mesh generation of 3-D complex MR volumes for bioelectromagnetic problems. Proceedings of IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005. P.4373–4376.

28.  Zhao Y., Xiu X.Z., Ho S.L. et al. An adaptive mesh method in transient finite element analysis of magnetic field using a novel error estimator. IEEE Transactions on Magnetics. 2012, Vol.48. No.11. P.4160–4163.

29.  Matsutomo S., Noguchi S., Yamashita H. Adaptive mesh generation method utilizing magnetic flux lines in two-dimensional finite element analysis. IEEE Transactions on magnetics. 2012. Vol.48. No.2. P.527–530.

30.  Noguchi S., Naoe T., Igarashi H. et al. A new adaptive meshing method using non-conforming finite element method. IEEE Conference on Electromagnetic Field Computation (CEFC). 2016. 1 p.

31.  Noguchi S., Naoe T., Igarashi H. A new adaptive mesh refinement method in FEA based on magnetic field conservation at elements interfaces and nonconforming mesh refinement technique. IEEE Transactions on Magnetics. 2017. Vol.53. No.6. P.1–4.

32.  Liu Y., Sarris C.D. AMR-FDTD: A dynamically adaptive mesh refinement scheme for the finite-difference time-domain technique. IEEE AP-S International symposium. 2005. P.134–137.

33.  Van Londersele A., de Zutter D., vande Ginste D. Huygens subgridding combined with the 2D fully collocated implicit FDTD method. IEEE International Symposium on Antennas and Propagation (APSURSI). 2016. P.2025–2026.

34.  Labridis D.P. Comparative presentation of criteria for adaptive finite-element mesh generation in multiconductor eddy-current problems. IEEE Transactions în Magnetics. 2000. Vol.36. No.1. P.267–280.

35.  Cendes Z., Shenton D. Adaptive mesh refinement in the finite element computation of magnetic fields. IEEE Transactions on Magnetics. 1985. Vol.21. No.5. P.1811–1816.

36.  Grätsch T., Bathe K.-J. A posteriori error estimation techniques in practical finite element analysis. Computers and Structures. 2005. Vol.83. P.235–265.

37.  Dworsky N. Introduction to numerical electrostatics using MATLAB. Hoboken, New Jersey. John Wiley and Sons. 2014. 456 p.

38.  Sadiku M.N.O. Numerical techniques in electromagnetics. Boca Raton: CRC Press. 2009. 710 p.

39.  Makarov S. N., Noetscher G. M., Nazarian A. Low-frequency electromagnetic modeling for electrical and biological systems using MATLAB. Hoboken, New Jersey. John Wiley and Sons. 2016. 589 p.

40.  Lezhnin E. V., Kuksenko S. P. Algorithm of nonequidistant segmentation of boundaries of conductors and dielectrics for computer-aided design of strip structures. Proceedings of IEEE 2017 International Multi-conference on Engineering, Computer and Information Sciences (SIBIRCON). 2017. P.468–471.

41.  Ashirbakiev R. I., Salov V. K. Adaptive iterative choice of optimal segmentation of the boundaries of conductors and dielectrics in electrostatics problems. Doklady TUSUR [Reports of the Tomsk State University of Control Systems and Radioelectronics]. 2013. No.3(29). P.159–161. (In Russian)

42.  Gibson W.C. The method of moments in electromagnetics. Boca Raton, Chapman &Hall/CRC. 2008. 272 p.

43.  Chernikova E.B., Gazizov T.R. Modal decomposition of an ultrashort pulse in 8-wire mirror-symmetric structures. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2020. No.9. https://doi.org/10.30898/1684-1719.2020.9.12. (In Russian)

44.  Swanson D.G., Hofer W.J. Microwave circuit modeling using electromagnetic field simulation. Norwood, Artech House Publishers. 2003. 474 p.

45.  Medvedev A.M., Mylov G.V., Kechiev L.N. Problems of technological support of transmission line parameters in multilayer printed circuit boards. Tekhnologii EMS [EMC Technologies]. 2012. No.3(42). P.1–6. (In Russian)

 

For citation:

Maksimov A.E., Kuksenko S.P. Study of methods for constructing adaptive meshes for quasi-static analysis of multiwire transmission lines by the method of moments. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.1. https://doi.org/10.30898/1684-1719.2021.1.10. (In Russian)