Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 1
Contents

Full text in English (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.1.8

UDC 535.13: 535.326: 535.36: 621.37

 

Computer simulation of the pulse-periodic electric field effect on the 2D director orientation of nematic liquid crystal. Experimental research of multimode nematic liquid crystal waveguides

A. S. Ayriyan1,2, E. A. Ayryan1,3, A. A. Egorov4,5

1 Joint Institute for Nuclear Research,  Joliot-Curie str., Dubna, Moscow Region, 141980, Russia

2 A.I. Alikhanyan National Science Laboratory, 2 Alikhanian Brothers str., Yerevan, 0036, Armenia

3 Dubna State University, 19 Universitetskaya str., Dubna, Moscow Region, 141982, Russia

4 Moscow A.S. Popov Scientific-Technical Society of Radio Engineering, Electronics and Communications, 2 Sretenskii Blv., Moscow, 101000, Russia

5 A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov str., Moscow, 119991, Russia

 

The paper was received on December, 28, 2020

 

Abstract. In this paper, we numerically investigate a two-dimensional differential equation describing the motion of a director of a nematic liquid crystal for the case of an alternating external electric field. The presence of the previously discovered accumulation effect has been confirmed by numerical modeling. A comparison is made with the case of a constant electric field, and also a qualitative comparison with an experiment is given. Incomplete agreement with experimental data indicates the need for further research. However, it should be noted that the constructed mathematical model of the phenomenon allows at this stage to obtain estimates that are sufficiently acceptable for experiment and correctly predict the dynamics of processes in liquid crystals. An analysis of the features of the propagation of quasi-waveguide modes in a liquid crystal waveguide showed that, in the case of dynamic processes, such effects as power exchange between coupled modes, leakage of modes, re-emission of modes into modes of a different order, etc., can be observed. The programs for numerical solution and computer modeling of two-dimensional parabolic partial differential equation were developed both in FORTRAN and C/C++. The results obtained are important for further investigation of dynamic processes inside non-stationary liquid crystal layers, both from a theoretical point of view for understanding kinetic processes in liquid crystals and from a practical point of view when organizing and conducting different experimental research.

Keywords: liquid crystal, director, 2D fluctuations, irregularities, boundary-value problem, optofluidics, waveguide, laser radiation, numerical simulation.

References

1.            Blinov L.M. Elktro- i magnetooptika zhidkikh kristallov [Electro- and Magnetooptics of Liquid Crystals]. Moscow. Nauka Publ. 1978. 384 p. (In Russian). 384 p.

2.            Blinov L.M., Chigrinov V.G. Electrooptic Effects in Liquid Crystal Materials. NY. Springer. 1994. 464 p.

3.            Pasini P., Zannoni C., Zumer S. Computer simulations of liquid crystals and polymers. NY. Taylor & Francis. 2004. 364 p.

4.            Stewart W. The static and dynamic continuum theory of liquid crystals. London. Kluwer. 2005. 360 p.

5.            Khoo I.C. Liquid Crystals. 2nd Edition. NY. Wiley. 2007. 368 p.

6.            Pasechnik S.V., Chigrinov V.G., Shmeliova D.V. Liquid Crystals: Viscous and Elastic Properties in Theory and Applications. NY. Wiley. 2009. 424 p.

7.            Srajer G., Fraden S., Meyer R.B. Field-induced nonequilibrium periodic structures in nematic liquid crystals: Nonlinear study of the twist Frederiks transition. Phys. Rev. A. 1989. Vol.39. No.9. P.4828-4835.

8.            Sugimura A., Matsui N., Takahashi Y., Sonomura H., Naito H., Okuda M. Transient currents in nematic liquid crystals. Phys. Rev. B. 1991. Vol.43. No.10. P.8272-8276.

9.            Barbero G., Evangelista L.R., Ponti S. Subsurface deformations in nematic liquid crystals. Phys. Rev. E. 1996. Vol.53. No.1. P.1265-1268.

10.       Bogi A., Faetti S. Elastic, dielectric and optical constants of 4'-pentyl-4-cyanobiphenyl. Liquid Crystal. 2001. Vol.28. No.5. P.729-739.

11.       Alaverdyan R.B., Aslanyan A.L., Aslanyan L.S., Gevorgyan G.S., Pakhalov V.B. Time dynamics of the nematic liquid crystal director in the field of a sequence of rectangular pulses. Optics and Spectroscopy. 2010. Vol.109. No.4. P.608-612.

12.       Ayriyan A.A., Ayrjan E.A., Egorov A.A., Hadjichristov G.B., Marinov Y.G., Maslyanitsyn I.A., Petrov A.G.,  Pribis J., Popova L., Shigorin V.D., Strigazzi A., Torgova S.I. Some features of second harmonic generation in the nematic liquid crystal 5CB in the pulsed-periodic electric field. Physics of Wave Phenomena. 2016. Vol.24. No.4. P.259-267.

13.       Ayriyan A.A., Ayrjan E.A., Egorov A.A., Dencheva-Zarkova M., Hadjichristov G.B., Marinov Y.G., Maslyanitsyn I.A., Petrov A.G., Popova L., Shigorin V.D., Strigazzi A., Torgova S.I. Modeling of static electric field effect on nematic liquid crystal director orientation in side-electrode cell. EPJ Web of Conferences. 2018. Vol.173. 03002.

14.       Lesiuk A.I., Ledney M.F., Tarnavskyy O.S. Orientational instability of nematic liquid crystal in a homeotropic cell with boundary conditions. Liquid Crystals. 2018. 1508769.

15.       Ayriyan A.S., Ayrjan E.A., Egorov A.A., Maslyanitsyn I.A., Shigorin V.D. Numerical modeling of the static electric field effect on the director of the nematic liquid crystal director. Mathematical Models and Computer Simulations. 2018. Vol.10. Issue.6. P.714-720.

16.       Ayriyan A.A., Ayryan E.A., Dencheva-Zarkova M., Egorov A.A., Hadjichristov G.B., Marinov Y.G., Maslyanitsyn I.A., Petrov A.G., Popova L., Shigorin V.D., Torgova S.I. Simulation of the static electric field effect on the director orientation of nematic liquid crystal in the transition state. Physics of Wave Phenomena. 2019. Vol.27. No.1. P.67-72.

17.       Egorov A.A. Study and analysis of light scattering loss in irregular integrated optical waveguides. Physics of Wave Phenomena. 2019. Vol.27. No.3. P.217-228.

18.       Egorov A.A., Ayriyan A.S., Ayrjan E.A. Irregular liquid crystal waveguide structures: analysis of quasi-stationary fluctuations, power loss and statistical properties of irregularities. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2020. https://doi.org/10.30898/1684-1719.2020.4.3

19.       Beeckman J., Yang T.-H., Nys I., George J.P., Lin T.-H.,  Neyts K. Multi-electrode tunable liquid crystal lenses with one lithography step. Optics Letters. 2018. Vol.43. No.2. P.271-274.

20.       Egorov A.A., Shigorin V.D., Ayriyan A.S., Ayryan E.A. Study of the effect of pulsed-periodic electric field and linearly polarized laser radiation on the properties of liquid-crystal waveguide. Physics of Wave Phenomena. 2018. Vol.26. No.2. P.116-123.

21.       Egorov A.A., Sevastyanov L.A., Shigorin V.D., Ayriyan A.A., Ayriyan E.A. Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling // Computer Optics. 2019. V.43. No.6. P. 976-982.

22.       Samarskii A.A. The theory of difference schemes. NY. Marcel Dekker. 2001. 761 p.

23.       Yong M. Optics and lasers. Including fibers and optical waveguides. NY. Springer. 2001. 498 p.

24.       Liu J.-M. Photonic Devices. Cambridge, Cambridge University Press. 2005. 1106 p.

25.       Egorov A.A., Lovetskii K.P., Sevastianov A.L., Sevastianov L.A. Integral’naya optika: teoriya i kompyuternoe modelirovanie. Monografiya. [Integrated Optics: Theory and Computer Modelling. Monograph]. Moscow. People Friendship University of Russia Publishing house. 2015. 330 p.  (In Russian)

26.       Fratalocchi A., Assanto G., Brzdąkiewicz K.A., Karpierz M.A. Discrete light propagation and self-trapping in liquid crystals. Optics Express. 2005. Vol.13. No.6. P.1808-1815.

27.       Egorov A.A., Sevast'yanov L.A. Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide. Quantum Electronics. 2009. Vol.39. No.6. P.566-574.

28.       Fratalocchi A., Asquini R., Assanto G. Integrated electro-optic switch in liquid crystals. Optics Express. 2005. Vol.13. No.6. P.32-37.

 

For citation:

Ayriyan A.S., Ayrjan E.A., Egorov A.A. Computer simulation of the pulse-periodic electric field effect on the 2D director orientation of nematic liquid crystal. Experimental research of multimode nematic liquid crystal waveguides. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.1. https://doi.org/10.30898/1684-1719.2021.1.8.