ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2021. № 1
Оглавление выпуска

Текст статьи (pdf)

English page

 

DOI https://doi.org/10.30898/1684-1719.2021.1.9

УДК 621.396

 

Волноводные СВЧ-фильтры: технические решения, тенденции развития и методы расчёта

 

В. В. Комаров, М. А. Лукьянов

Саратовский государственный технический университет имени Гагарина Ю.А., 410054, г. Саратов, ул. Политехническая 77

 

Статья поступила в редакцию 11 января 2021 г.

 

Аннотация. Для фильтрации электромагнитных сигналов в современных микроволновых системах применяются самые разнообразные частотно-селективные устройства, выполненные по разным технологиям. В системах малого и среднего уровня мощности (менее 100 Вт) находят распространение планарные структуры на диэлектрических подложках. В более мощных системах для этих целей используются СВЧ-фильтры на объемных  резонаторах и волноводах. Волноводные СВЧ-фильтры представляют собой отдельный класс перспективных функциональных устройств, динамично развивающийся в настоящее время. Разнообразие конструкций таких фильтров, технологий их изготовления и методов расчета весьма велико. В связи с этим в данной работе проведен обзор волноводных СВЧ-фильтров разных частотных диапазонов и предложена их классификация. Определены тенденции и перспективные направления развития данных устройств. Показано, что волноводные фильтры успешно адаптированы для работы на разных частотах, как в микроволновом, так и в терагерцевом диапазонах. Проанализированы структуры этих фильтров, некоторые методы их изготовления и математического моделирования.

Ключевые слова: волноводные фильтры, СВЧ-диапазон, индуктивные и емкостные неоднородности, методы расчета.

Abstract. Various frequency selective devices manufactured by different technologies are used in modern microwave systems to filtering electromagnetic signals. Planar structures on dielectric substrates find a wide spread in low- and average-level (less than 100 W) power systems. Microwave filters on cavities and waveguides are utilized in high-power systems for these purposes. Waveguide filters are the separate class of perspective functional devices dynamically developing in the present time. Diversity of designs of such filters, techniques of their manufacturing and methods of calculation is quite high. In conjunction with this a review of waveguide microwave filters of different frequency ranges is carried out in the present work. Their classification is proposed. It is shown that waveguide filters are well adapted for operating at different frequencies both in microwave and terahertz ranges. Structures of filters, some methods of their manufacturing and mathematical modeling are analyzed. 

Key words: waveguide filters, microwave range, inductive and capacitive irregularities, computation techniques.

Литература

1.     Маттей Д.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. Пер с англ. под ред. Л.В. Алексеева и Ф.В. Кушнира. Москва, Связь. 1971. Т.1. 440 с. Т.2. 496 с.

2.     Cameron R.J., Kudsia C.M., Mansour R.R. Microwave filters for communication systems.NY, Wiley. 2007. 772 p.

3.     Мещанов В.П. СВЧ-фильтры и мультиплексоры для систем космической связи. Москва, Радиотехника, 2017. 256 с.

4.     Гуляев Ю.В. Фильтрация и спектральный анализ радиосигналов. Алгоритмы, структуры, устройства. Москва, Радиотехника. 2020. 504 с.

5.     Cogollos S., Brumos M., Boria V.E. et al. A systematic design procedure of classical dual-mode circular waveguide filters using an equivalent distributed model. IEEE Transactions on Microwave Theory and Techniques. 2012. Vol.60. No 4. P. 1006-1017. https: //doi.org/10.1109/TMTT.2012.2183381

6.     Doumanis E., Goussetis G., Kosmopoulos S. Filter design for satellite communications. Boston: Artech House. 2015. 204 p.

7.     Шаров Г.А. Волноводные устройства сантиметровых и миллиметровых волн. Москва, Горячая линия-Телеком. 2016. 640 с.

8.     Vahldieck R., Bornemann J., Arndt F., Grauerholz D. Optimized waveguide E-plane metal insert filters for millimeter-wave applications. IEEE Transactions on Microwave Theory and Techniques. 1983. Vol.31. No.1. P.65-69. https://doi.org/10.1109/TMTT.1983.1131430

9.     Goussetis G., Feresidis A.P., Budimir D., Vardaxoglou J.C.  Compact ridge waveguide filter with parallel and series-coupled resonators. Microwave and Optical Technology Letters. 2005. Vol.45. No.1. P.22-23.  https://doi.org/10.1002/mop.20711

10. Mohottige N., Glubokov O., Jankovich U., Bidimir D. Ultra compact inline E-plane waveguide bandpass filter using cross coupling. IEEE Transactions on Microwave Theory and Techniques. 2016. Vol.64. No.8. P.2561-2571. https://doi.org/10.1109/TMTT.2016.2578329

11. Ofli E., Vahldieck R., Amari S. Novel E-plane filter and diplexers with elliptic response for millimeter-wave applications.  IEEE Transactions on Microwave Theory and Techniques. 2005. Vol.53. No.3. P.843-851. https://doi.org/10.1109/TMTT.2004.842506

12. Gowrish B., Mansour R.R. A novel bandwidth reconfigurable waveguide filter for aerospace applications. IEEE Microwave and Wireless Technologies. 2020. Vol.30. No. 6. P. 577-580. https://doi.org/10.1109/LMWC.2020.2989283

13. Arndt F., Bornemann J., Grauerholz D., Vahldieck R. Theory and design of low-insertion loss fin-line filters. IEEE Transactions on Microwave Theory and Techniques. 1982. Vol. 30. No 2. P.155-163. 

     https://doi.org/10.1109/TMTT.1982.1131041

14. Matsushima A., Fukuda Y. Numerical analysis of waveguide bandpass filters using singular integral equations and construction of simple design formulas. Electrical Engineering in Japan. 2004. Vol.148. No.4. P.17-25. https://doi.org/10.1002/eej.10251

15. Choocadee S., Akatimagool S. The simulation, design and implementation of bandpass filters in rectangular waveguides. Electrical and Electronic Engineering. 2012. Vol.2. No.3. P.152-157. https://doi.org/10.5923/j.eee.20120203.08

16. Xu Z.-B., Guo J., Qian C., Dou W.-B. A novel quasi-elliptic waveguide transmit reject filter for Ku-band vsat transceivers. Progress in Electromagnetics Research. 2011. Vol.117. P.393-407. https://doi.org/10.2528/PIER11051601

17. Guo Z.-C., Zhu L., Wong S.-W. Synthesis of transversal bandpass filter on stacked rectangular H-plane waveguide cavities. IEEE Transactions on Microwave Theory and Techniques. 2019. Vol.67. No.9. P.3651-3660. https://doi.org/10.1109/TMTT.2019.2925341

18. Cai S.-F., Wang Q.-Y., Wang Z.-Y., Zhai Y.-F. Design of a FSS waveguide filter at 8.05 GHz. IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components. 2008. Chengdu, China. P.173-175. https://doi.org/10.1109/IMWS.2008.4782241

19. Prikolotin S.A., Kirilenko A.A. Waveguide bandstop (bandpass) filters on stepped conductors (slots) sections. Proceedings of the 41st Microwave European Conference. 2011. Manchester. UK. P.365-368.

https://doi.org/10.23919/EuMC.2011.6101927

20. Морозов А.В., Наумов П.Н., Нырцов А.Н. Устройства сверхвысоких частот и антенны. Москва, Радиотехника. 2009. 432 с.

21. Fedi G., Manetti S., Pelosi G., Seller S. Design of cylindrical posts in rectangular waveguide by neural network approach. Proceedings of the IEEE Antennas and Propagation Society Symposium. Vol.2. 2000. Salt-Lake City. USA. P.1054-1057. https://doi.org /10.1109/APS.2000

22. Bachiller C., Esteban H., Mata H., Valdes M.A., Boria V.E., Belenguer A., Morro J.V. Hybrid mode matching method for the efficient analysis of metal and dielectric rods in H plane rectangular waveguide devices. IEEE Transactions on Microwave Theory and Techniques. 2010. Vol.58. No.12. P.3634-3644. https://doi.org/10.1109/TMTT.2010.2083951

23. Albooyeh M., Lotfi Neyestanak A.A., Mirzapour B. Wideband dual post waveguide band pass filter. International Journal of Microwave and Optical Technology. 2007. Vol.2. No.3. P.203-209.

24. Prikolotin S.A., Kirilenko A.A. A novel notch waveguide filter. Microwave and Optical Technology Letters. 2010. Vol.52. No.2. P.416-420. https://doi.org/10.1002/mop.24892

25. Rosenberg U., Amari S. A novel band-reject element for pseudoelliptic bandstop filters. IEEE Transactions on Microwave Theory and Techniques. 2007. Vol.55. No.4. P.742-746. https://doi.org/10.1109/TMTT.2007.893653

26. Zhao P., Wu K. Homotopy optimization of microwave and millimeter-wave filters based on neural network model. Transactions on Microwave Theory and Techniques. 2020. Vol.68. No.4. P.1390-1400.

https://doi.org/10.1109/TMTT.2019.2963639

27. Zhang Y., Meng H., Wu K.-L. Direct synthesis and design of dispersive waveguide bandpass filters. Transactions on Microwave Theory and Techniques. 2020. Vol.68. No.5. P.1678-1687. https://doi.org/10.1109/TMTT.2020.2969385

28. Bachiller C., Estaban H., Morro J.V., Boria V. Hybrid mode matching method for the efficient analysis of rods in waveguide structures. Mathematical and Computer Modeling. 2013. Vol.57. P.1832-1839. https://doi.org/10.1016/j.mcm.2011.11.076

29. Bastiolli S., Marcaccioli L., Sorrentino R. Waveguide pseudoelliptic filters using slant and transverse rectangular ridge resonators. Transactions on Microwave Theory and Techniques. 2008. Vol.56. No.12. P.3129-3136.

 https:doi.org/10.1109/TMTT.2008.2007137

30. Bastiolli S., Marcaccioli L., Sorrentino R. Compact dual-mode rectangular waveguide filters using square ridge resonators. International Journal of Microwave and Wireless Technologies. 2009. Vol.1. No.4. P.241-247. https://doi.org/10.1017/S1759078709990286

31. Заргано Г.Ф., Ляпин В.П., Михалевский В.С.  и др. Волноводы сложных сечений. М.: Радио и связь, 1986. 124 с.

32. Labay V.A., Bornemann J. CAD of T-septum waveguide evanescent-mode filters. Transactions on Microwave Theory and Techniques. 1993. Vol.41. No.4. P.731-733. https://doi.org/10.1109/22.231675

33. Земляков В.В., Заргано Г.Ф. Волноводные селективные устройства. Ростов-на-Дону, Изд-во ЮФУ. 2019. 310 с.

34. Pajovic S.S., Potrebic M., Tosic D.V. Advanced filtering waveguide components for microwave systems in Microwave Systems and Applications. London: Intech Open Publising. 2017. P. 41-61. http://dx.doi.org/10.5772/66228

35. Shang X., Penchev P., Lancaster M.J., et al. W-band waveguide filters fabricated by laser micromachining and 3D printing. Transactions on Microwave Theory and Techniques. 2016. Vol.64. No.8. P.2572-2580. https://doi.org/10.1109/TMTT.2016.2574839

36. Ding J., Hu J., Liu D. et al. A 240-GHz wideband ridged waveguide filter based on MEMS process. Journal of Millimeter and Terahertz Waves. 2017. V.38. P. 283-291. https://doi.org/10.1007/s10762-016-0332-3

37. Salek M., Shang X., Roberts R.C. et al. W-band waveguide bandpass filters fabricated by micro laser sintering. Transactions on Circuits and Systems. 2019. Vol.66. No.1. P. 61-65.  https://doi.org/10.1109/TCSII.2018.2824898

38. Chen X.-P., Wu K. Substrate integrated waveguide filters: design techniques and structures. IEEE Microwave Magazine. 2014. Vol.9.  P.121-133.

https://doi.org/10.1109/MMM.2014.2332886

39. Zemlyakov V.V. The band-pass SIW-filter based on L-ridged rectangular waveguide. Proceedings of the Electromagnetics Research Symposium. 2013. Stockholm. Sweden. P. 605-609.

40. Фельдштейн А.Л., Явич Л.Р., Смирнов В.П. Справочник по элементам волноводной техники. Москва, Советское радио. 1967. 652 с.

41. Будурис Ж., Шеневье П. Цепи сверхвысоких частот. Москва, Советское радио. 1979. 288 с.

42. Roelvink J., Williamson A.G. Analysis of a solid variable-length cylindrical post in a rectangular waveguide. IET Microwaves, Antennas and Propagation. 2007. Vol.1. No.2. P.506-512. https://doi.org/10.1049/iet-map:20060182

43. Roelvink J., Williamson A.G. T-equivalent circuit parameters of a variable-length cylindrical post in a rectangular waveguide. IEEE Microwave and Wireless Components Letters. 2008. Vol.18. No.7. P.425-427.

https://doi.org/10.1109/LMWC.2008.924904

44. Williamson A.G. Equivalent circuits for gap- and coax-excited circular posts in rectangular waveguide. Transactions on Microwave Theory and Techniques. 2009. Vol.57. No.10. P.2384-2390. https://doi.org/10.1109/TMTT.2009.2029621

45. Григорьева А.Д. Методы вычислительной электродинамики. Москва, Физмаилит.   2012. 432 с.

 

Для цитирования:

Комаров В.В., Лукьянов М.А. Волноводные СВЧ-фильтры: технические решения, тенденции развития и методы расчёта. Журнал радиоэлектроники [электронный журнал]. 2021. №1. https://doi.org/10.30898/1684-1719.2021.1.9