Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.1.10

 

INVESTIGATION OF THE CHARACTERISTICS OF A DEPLOYABLE SPACE MIRROR ANTENNA WITH A SPARSE REFLECTING SURFACE

 

V.V. Golovin, Y.N. Tyschuk

 

Sevastopol State University, 299053, Sevastopol, 33 universitetskaya str.

 

The paper was received November 16, 2022

 

Abstract. The article presents the results of a study of the characteristics of a space parabolic mirror with a deployable reflector. A model of the reflector truss structure formed by two asymmetric parabolic networks with tension cables is presented. Three variants of the sparse structure of the reflecting film of the reflector are presented, differing in periodically repeating hexagonal holes with different sizes. A complex electrodynamic modeling of the radiation characteristics of a parabolic mirror antenna with a developed model of a truss-bearing structure and the proposed structures of reflective films, allowing to reduce the mass of the reflector and increase the reliability of the antenna system, are carried out. The estimation of the frequency dependences of the characteristics of the variants of the parabolic mirror antenna model is given. Recommendations on the use of sparse reflective films for small, medium and large apertures of deployable reflectors are proposed.

Key words: mirror antenna, reflector truss, space antenna, deployable reflector.

Corresponding author: Tyschuk Yury Nikolaevich, y.tyschuk@gmail.com

References

1. Roederer A.G., Rahmat-Samii Y. Unfurlable Satellite Antennas: A Review. Annales des Telecommun. 1989. V.44. 9/10. P.475-488.

2. Space Acquisitions. Space Communication Bands [Web]. AcqNotes. Program Management Tool for Aerospace. Дата обращения: 28.10.2022. URL: https://acqnotes.com/acqnote/careerfields/space-communication-bands

3. Morterolle S., Maurin B., Quirant J., Dupuy Ch. Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronautica. 2012. №76. P.154-163. http://dx.doi.org/10.1016/j.actaastro.2012.02.025

4. Miura K., Miyazaki Y. Concept of the tension truss antenna. AIAA Journal. 1990. V.28. №6. P.1098-1104. https://doi.org/10.2514/3.25172

5. Meshkovsky V., Sdobnikov A., Churilin S., Kisanov Y. Numerical investigations of shape of the reflecting surface made of knitted mesh fabric being pulled on the curvilinear frame. EPJ Web of Conferences EPPS2019. 2019. 25 p. https://doi.org/10.1051/epjconf/201922101031

6. Li T., Deng H., Lin Z., Wang Z. Form-finding methods for deployable mesh reflector antenna. Chinese Journal of Aeronautics. 2013. V.26. №5. P.1276-1282. http://dx.doi.org/10.1016/j.cja.2013.04.062

7. Agrawal P.K., Anderson M.S., Card M.F. Preliminary design of large reflectors with flat facets. IEEE Transactions on Antennas and Propagation. 1981. V.29. №4. P.688-694. https://doi.org/10.1109/TAP.1981.1142631

8. Yang G., Yang D., Zhang Y., Du J. Form-finding design of cable-mesh reflector antennas with minimal length configuration. Aerospace Science and Technology. 2016. 20 p. http://dx.doi.org/10.1016/j.ast.2016.11.010

9. Zhang Y., Duan B., Li T. A controlled deployment method for flexible deployable space antennas. Acta Astronautica. 2012. V.81. №1. P.19-29. http://dx.doi.org/10.1016/j.actaastro.2012.05.033

 

For citation:

Golovin V.V., Tyschuk Y.N. Investigation of the characteristics of a deployable space mirror antenna with a sparse reflecting surface. Zhurnal radioelectroniki [Journal of Radio Electronic] [online]. 2023. №1. https://doi.org/10.30898/1684-1719.2023.1.10 (In Russian)