Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №1
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.1.12
Influence of the Transistor Seat Capacitance
on Its Immunity to Electrostatic Discharge
A.A. Drozdova, I.I. Nikolaev, M.E. Komnatnov
Tomsk State University of Control Systems and Radioelectronics
634050, Russia, Tomsk, Lenina str., 40
The paper was received November 15, 2022.
Abstract. The paper presents an assessment of the resistance of field-effect transistors to the effects of an electrostatic discharge. It is made for two field-effect transistors of different types of conductivity, IRFZ46N and IRF4905 SPbF, in different TO-220 and TO-263 packages, with and without taking into account the seat capacitance. Analytical and quasi-static models of transistor package seats are presented, and with their help, an analysis of intrinsic and mutual capacitances is carried out with and without allowance for the solder layer. The analysis showed that the solder layer on the transistor electrodes increases the gate-source and drain-source capacitance by 1.7 times for the IRFZ46N transistor and by 2.2 times for the IRF4905 SPbF transistor. Based on the calculated capacitances, a circuit model of the transistor was created, taking into account the packages and seat with a solder layer. A circuit and a model are presented for assessing the resistance of transistors to the effects of an electrostatic discharge in a circuit simulator. An analysis of the results of simulating and experiments showed that the seat capacitance, taking into account the solder layer, has a significant effect on the breakdown voltage of the gate dielectric of the transistor when exposed to an electrostatic discharge. It is shown that the critical amplitudes of the electrostatic discharge voltage for the performance of the IRFZ46N transistors in the TO-220 package and IRF4905 SPbF in the TO-263 package, taking into account the capacitance of the seat, are 3.05 and 4.75 kV, and without taking into account these values are higher by 0.2-0.25 kV. A comparison of the simulation and experimental results showed a difference of no more than 2%.
Keywords: electromagnetic compatibility, electrostatic discharge, electronic components, FET, breakdown voltage.
Financing: The work was supported by the Russian Science Foundation project № 19-79-10162.
Corresponding author: Drozdova Anastasiya Aleksandrovna, anastasiya.drozdova.00@list.ru
References
1. Kechiev L.N., Pozhidaev E.D. Zashchita elektronnykh sredstv ot vozdeystviya staticheskogo elektrichestva [Protection of electronic means from the effects of static electricity]. Moscow, Tekhnologii Publishing House. 2005. 352 p. (In Russian)
2. Lin N., Liang Y., Wang P. Evolution of ESD process capability in future electronic industry. 15th Int. conf. on electronic packaging technology. Chengdu, China. 2014. Р.1556-1560. https://doi.org/10.1109/ICEPT.2014.6922951
3. Gorlov M.I. Static electricity and semiconductor electronics. Priroda [Nature]. 2006. №12. Р.27-36. (In Russian)
4. Xijun Z., Zhancheng W., Xuejun S., Wenwu S. Study on effect experiment of ESD EMP to single chip microcontroller. IEEE Int. Symp. on microwave, antenna, propagation and EMC tech. Beijing. 2005. P.631-634. https://doi.org/10.1109 /MAPE.2005.1617990
5. Alekseev V.F., Silkov N.I., Piskun G.A., Pikulik A.N. Test of microcontrollers for sensitivity to the electrostatic category. Elektronika, radiofizika, radiotekhnika, informatika [Electronics, radiophysics, radio engineering, informatics]. 2011. №5(59). P.5-11. (In Russian)
6. Gorlov M.I., Andreev A.V., Vorontsov I.V. Vozdeystviye elektrostaticheskikh zaryadov na izdeliye poluprovodnikovoy elektroniki i radioelektronnoy apparatury [The impact of electrostatic charges on the product of semiconductor electronics and electronic equipment]. Voronezh, Ed. Voronezh State University. 1997. 160 p. (In Russian)
7. Konstantinov U.A., Pozhidaev E.D., Tumkovskiy S.R. Investigation of electrostatic discharge effect on high-power MOSFET-transistors considering the influence of PCB. Int. seminar on elec. dev. design and prod. (SED). Prague, Czech Republic. 2019. P.1-4. https://doi.org/10.1109/SED.2019.8798468
8. Struktury integral'nykh MOP-tranzistorov [Structures of integrated MOSFETs] [web]. Helpiks. Date of access: 11.06.2022. URL: https://helpiks.org/7-69025.html
9. White paper 2: A case for lowering component level CDM ESD specifications and requirements, industry council on ESD target levels. Industry Council on ESD Target Levels Revision 2.0. 2010. 173 p.
10. Konstantino Yu.A., Gorlanov E.S., Pozhidaev E.D., Tumkovskii S.R. Computer simulation for the impact of electrostatic discharges on the power MOS transistors taking into account the influence of the capacitance of the printed circuit board. Sistemnyy administrator [System Administrator]. 2018. №9 (190). P.84-89. (In Russian)
11. Komnatnov M.E., Pochuyev M.I. Preliminary analysis of the reasons for the abnormal operation of Pierce's self-oscillator. Nauchno-tekhnicheskaya konferentsiya molodykh spetsialistov OAO «ISS» [Scientific and technical conference of young specialists of JSC “ISS”]. 2014. P.90-92. (In Russian)
12. PackageDetails - TO-220 [web]. Central Semiconductor Corp. Date of access: 15.06.2022. URL: https://www.centralsemi.com/PDFS/CASE/TO_220_PD.PDF
13. ТО-263AB [web]. Diodes Incorporated. Date of access: 15.06.2022. URL: https://www.diodes.com/assets/Package-Files/TO263AB%20(D2PAK).pdf
14. Schneider M.V. Microstrip lines for microwave integrated circuits. Bell Syst. Tech. 1969. V.48. №5. P.1421.
15. Wheeler H.A. Transmission line properties of a strip on a dielectric sheet on a plane. IEEE Trans. Microwave Theory Tech. 1977. V.MTT-25. №8. P.631. https://doi.org/10.1109/ TMTT.1965.1125962
16. Levitsky A.S., Baljaschuk L.I. Calculation of condensers capacity with coplanar electrodes. Tekhnicheskaya elektrodinamika [Technical electrodynamics]. 2008. №1. P.64-70. (In Russian)
17. Kuksenko S.P., Zabolotsky A.M., Melkozerov A.O. New features of electromagnetic compatibility in TALGAT simulation software. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems and Radioelectronics]. 2015. V.36. №2. P.45-50. (In Russian)
18. Shichman H., Hodges А. Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE Journal of solid-state circuits. 1968. V.3. №3. P.285-289. https://doi.org/10.1109/JSSC.1968.1049902
19. LTspice [web]. Analog devices. Date of access: 1.07.2022. URL: https://www.analog.com/ru/design-center/design-tools-andcalculators/ltspice-simulator.html
20. IRFZ46NPbF [web]. HEXFET Power MOSFET. Date of access: 25.06.2022. URL: https://www.infineon.com/dgdl/Infineon-IRFZ46N-DataSheet-v01_01-EN.pdf?fileId=5546d462533600a40153563b734b
21. IRF4905SPb [web]. HEXFET Power MOSFET. Date of access: 25.06.2022. URL: https://alltransistors.com/adv/pdfdatasheet_international_rectifier/irf4905lpbf_irf4905spbf.pdf
22. Modeli tranzistorov, diodov, mikroskhem i t.d [Models of transistors, diodes, microcircuits, etc.] [web]. Musatoffcv. Date of access: 4.07.2022. URL: http://musatoffcv.narod.ru/Libs/Models.htm
23. Yousaf J., Shin J., Lee H., Nah W. Efficient circuit and EM model of electrostatic discharge generator. IEEE Int. symp. on electromagn. сompat. and signal/power integrity (EMCSI). 2017. P.164-168. https://doi.org/10.1109/ISEMC.2017.8077860
24. IEC 61000-4-2. “Testing and measurement techniques - Electrostatic discharge immunity test.” Ed: IEC. 2008. P.26.
25. International IOR rectifier, IR Application Note AN-986. “ESD Testing of MOS Gated Power Transistors,” 1998. 20 p.
Forcitation:
Drozdova A.A., Nikolaev I.I., Komnatnov M.E. Influence of the transistor seat capacitance on its immunity to electrostatic discharge. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №1. https://doi.org/10.30898/1684-1719.2023.1.12