Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.1.14

 

ADAPTIVE SEGMENTATION METHODS

for quasi-static analysis

of MULTICONDUCTOR transmission lines

 

A.E. Maksimov, S.P. Kuksenko

 

Tomsk state university of control systems and radioelectronics

634050, Russia, Tomsk, prospect Lenina, 40

 

The paper was received December 23, 2022.

 

Abstract. Various methods of adaptive segmentation of the cross-section boundaries of multiconductor transmission lines are generalized. The method of moments was used in the simulation. Four methods of adaptive segmentation are considered and the most optimal of them is determined. The optimality criterion was accuracy and cost-effectiveness of calculating matrices of per-unit-length parameters of transmission lines. For verification, 6 different software tools and measurement results were used.

Keywords: multiconductor transmission line, adaptive segmentation, per-unit-length parameters of transmission line, method of moments.

Financing: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under project FEWM-2020-0039.

Corresponding author: Maksimov Aleksandr Evgenevich, mae@tusur.ru

References

1. Rosloniec S. Fundamental Numerical Methods for Electrical Engineering. Berlin, Springer. 2008. 294 p.

2. Özgün Ö., Kuzuoğlu М. MATLAB-based Finite Element Programming in Electromagnetic Modeling. Boca Raton, CRC Press. 2018. 440 p.

3. Harrington R.F. Matrix methods for field problems. Proceedings of the IEEE. 1967. V.55. №2. P.136-149.

4. Keysight Technologies. PathWave Advanced Design System (ADS) [web]. Keysight. Date of access: 01.12.2022. URL: www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html

5. FastFieldSolvers S.R.L. Fast Field Solvers products [web]. FastFieldSolvers. Date of access: 01.12.2022. URL: www.fastfieldsolvers.com/software.htm

6. Hamburg University of Technology. Multiconductor Transmission Line Analysis [web]. Institut für Theoretische Elektrotechnik. Date of access: 01.12.2022. URL: www.tet.tuhh.de/en/concept-2/multiconductor-analysis

7. Dr. Tapan K. Sarkar. LINPAR [web]. Electromagnetics & Signal Processing. Date of access: 01.12.2022. URL: https://ecs.syr.edu/faculty/sarkar/software.asp?id=linpar

8. Gazizov T.R., Zabolotsky A.M., Kuksenko S.P., Komnatnov M.E., Surovtcev R.S. Simulation of radioelectronic equipment elements: new approaches, models, and algorithms, their implementation and application. Nanoindustriya [Nanoindustry]. 2020. V.13. №S4 (99). P.366-369. https://doi.org/10.22184/1993-8578.2020.13.4s.366.369  (In Russian)

9. Fusco V. Microwave circuits. Analysis and Computer-aided Design. New Jersey, Prentice-Hall Int. 1987. 372 p.

10. Lo D.S.H. Finite Element Mesh Generation. Boca Raton, CRC Press. 2015. 672 p.

11. Maksimov A.E., Kuksenko S.P. Study of methods for constructing adaptive meshes for quasi-static analysis of multiwire transmission lines by the method of moments. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №1. https://doi.org/10.30898/1684-1719.2021.1.10 (In Russian)

12. Zabolotskii A.M., Gazizov T.R. Vremennoi otklik mnogoprovodnykh linii peredachi [Time response of multiconductor transmission lines]. Tomsk, Tomsk State University. 2007. 152 p. (In Russian)

13. Khovratovich V.S. Parameters of multiconductor transmission lines. Journal of Communications Technology and Electronics. 1975. №3. P.469-473.

14. Paul C.R. Analysis of Multiconductor Transmission Lines. Hoboken/New Jersey, John Wiley &Sons. 2008. 800 p.

15. Maksimov A.E., Kuksenko S.P. Accurate capacitance matrices for multiconductor transmission lines. IEEE Transactions on Electromagnetic Compatibility. 2022. V.64 №5. P.1514-1521. https://doi.org/10.1109/TEMC.2022.3175717

16. Venkataraman J., Rao S.M., Djordjevic A.R., Sarkar T.K., Yang N. Analysis of arbitrarily oriented microstrip transmission lines in arbitrarily shaped dielectric media over a finite ground plane. IEEE Transactions on Microwave Theory and Techniques. 1985. V.33. P.952-959.

17. Bazdar M.B., Djordjevic A.R., Harrington R.F. Evolution of quasi-static matrix parameters for multiconductor transmission lines using Galerkin’s method. IEEE Transactions on Microwave Theory and Techniques. 1994. V.41. №7. P.1223-1228.

18. Yang Z., Wang Z., A virtual 3-D fast extractor for interconnect capacitance of multiple dielectrics. Microelectronic Engineering. 2003. V.65. P.133-144. https://doi.org/10.1016/S0167-9317(02)00746-3

19. Struchkov S.M., Sychev A.N. Method of measuring per-unit-length parameters of symmetrical coupled lines. International Scientific and Practical Conference «Ehlektronnye sredstva i sistemy upravleniya» [Electronics and Control Systems]. 2015. P.159-163. (In Russian)

20. Certificate of state registration of a computer program RF №2022662895. Maksimov A.E, Kuksenko S.P. Programma dlya rascheta matrits koehffitsientov ehlektrostaticheskoi i ehlektromagnitnoi induktsii metodom momentov [A program for calculating coefficients matrices of electrostatic and electromagnetic induction by the method of moments]. Application Date: 01.07.2022. Publication Date: 07.07.2022. 1 p. URL: https://new.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2022662895&TypeFile=html (In Russian)

21. Scheinfein M.R., Palusinski O.A. Methods of calculation of electrical parameters for electronic packaging applications. Transactions of the Society for Computer Simulation. 1987. V.4. P.187-254.

22. Dworsky L.N. Introduction to Numerical Electrostatics Using MATLAB. Hoboken/New Jersey, John Wiley &Sons. 2014. 464 p.

23. Zhai K., Yu W. The 2-D boundary element techniques for capacitance extraction of nanometer VLSI interconnects. International Journal of Numerical Modelling. 2013. V.27. №4. P.656-668. https://doi.org/10.1002/jnm.1934

24. Ruehli A., Antonini G., Jiang L. Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques. Hoboken/New Jersey, John Wiley &Sons. 2017. 464 p.

25. Maksimov A.E., Kuksenko S.P. Adaptive iterative selection of optimal segmentation in solving electrostatic problems by the method of moments. International Scientific and Practical Conference «Prirodnye i intellektual'nye resursy Sibiri» (SIBRESURS-26-2020) [Natural and Intellectual Resources of Siberia (SIBRESURS-26-2020)]. 2020. P.112-116. (In Russian)

26. Maksimov A., Kuksenko S. Adaptive segmentation of multiconductor transmission lines in quasi-static analysis by the method of moments. Journal of Physics: Conference Series. EDCS 2020. 2021. P. 012020. https://doi.org/10.1088/1742-6596/1862/1/012020

27. Swanson D.G., Hofer W.J. Microwave Circuit Modeling Using Electromagnetic Field Simulation. Norwood, Artech House Publishers. 2003. 474 p.

28. Zhou Y., Li Z., Shi W. Fast capacitance extraction in multilayer, conformal and embedded dielectric using hybrid boundary element method. 44th ACM/IEEE Design Automation Conference. 2007. P.835-840.

29. Homentcovschi D., Oprea R. Analytically determined quasi-static parameters of shielded or open multiconductor microstrip lines. IEEE Transactions on Microwave Theory and Techniques. 1998. V.46. №1. P.18-24. https://doi.org/10.1109/22.654918

 

For citation:

Maksimov A.E., Kuksenko S.P. Adaptive segmentation methods for quasi-static analysis of multiconductor transmission lines. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №1. https://doi.org/10.30898/1684-1719.2023.1.14 (In Russian)