Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.1.4

 

INFLUENCE OF RELAXATIONS IN SOIL WATER ON THE TEMPERATURE DEPENDENCE OF SOIL PERMITTIVITY

 

A.Yu. Karavayskiy, Yu.I. Lukin

 

Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences,

660036, Krasnoyarsk, Akademgorodok 50, bld. 38

 

The paper was received November 25, 2022

 

Abstract. The influence of the dielectric constant spectra of bound and unbound water in mineral soil on the temperature dependences of the dielectric constant of mineral soil in the electromagnetic field frequency range from 50 MHz to 15 GHz was studied. The reasons for the appearance of the crossover frequency of the dielectric constant of mineral soil, obtained at different temperatures, but for a sample of the same moisture, were studied. It was proved that the appearance of crossover points in the frequency range up to 1.5 GHz is related to the Maxwell-Wagner effect in bound water. The dependences of the value of the crossover frequency of the dielectric constant of mineral soil on temperature and the volume content of bound and unbound water were studied.

Key words: dielectric constant, mineral soil, soil moisture, bound water, Maxwell-Wagner effect.

Financing: The work was financially supported by the Russian Science Foundation and the Krasnoyarsk Regional Fund for Support of Scientific and Scientific and Technical Activities within the framework of the scientific project No. 22-27-20112

Corresponding author: Karavayskiy Andrey Yurievich, rsdak@ksc.krasn.ru

References

1. Topp G.C., Davis J.L., Annan A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. 1980. V.16. №3. P.574-582. https://doi.org/10.1029/WR016i003p00574

2. Huisman J.A., Hubbard S.S., Redman J.D., Annan A.P. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal. 2003. V.2. №4. P.476-491. https://doi.org/https://doi.org/10.2136/vzj2003.4760

3. Kizito F., Campbell C.S., Campbell G.S., Cobos D.R., Teare B.L., Carter B., Hopmans J.W. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology. 2008. V.352. №3. P.367-378. https://doi.org/https://doi.org/10.1016/j.jhydrol.2008.01.021

4. Woszczyk A., Szerement J., Lewandowski A., Kafarski M., Szypłowska A., Wilczek A., Skierucha W. An open-ended probe with an antenna for the measurement of the water content in the soil. Computers and Electronics in Agriculture. 2019. V.167. P.105042. https://doi.org/https://doi.org/10.1016/j.compag.2019.105042

5. Szerement J., Woszczyk A., Szypłowska A., Kafarski M., Lewandowski A., Wilczek A., Skierucha W. Evaluation of a Multi-Rod Probe Performance for Accurate Measurements of Soil Water Content. 2020 Baltic URSI Symposium (URSI). 2020. P.158-160. https://doi.org/10.23919/URSI48707.2020.9254059

6. Mironov V.L., Karavayskiy A.Y., Lukin Y.I., Molostov I.P. A dielectric model of thawed and frozen Arctic soils considering frequency, temperature, texture and dry density. International Journal of Remote Sensing. 2020. V.41. №10. P.3845-3865. https://doi.org/10.1080/01431161.2019.1708506

7. Belyaeva T.A., Bobrov P.P., Kroshka E.S., Repin A. V. Complex dielectric permittivity of saline soils and rocks at frequencies from 10 kHz to 8 GHz. 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). 2017. P.3046-3051. https://doi.org/10.1109/PIERS.2017.8262278

8. Loewer M., Günther T., Igel J., Kruschwitz S., Martin T., Wagner, N. Ultra-broad-band electrical spectroscopy of soils and sediments – a combined permittivity and conductivity model. Geophysical Journal International. 2017. V.210. №3. P.1360-1373. https://doi.org/10.1093/gji/ggx242

9. Kemna A., Binley A., Cassiani G., Niederleithinger E., Revil A., Slater L., Williams K.H., Orozco A.F., Haegel F.-H., Hördt A., Kruschwitz S., Leroux V., Titov K., Zimmermann E. An overview of the spectral induced polarization method for near-surface applications. Near Surface Geophysics. 2012. V.10. №6. P.453-468. https://doi.org/10.3997/1873-0604.2012027

10. Wagner N., Scheuermann A. On the relationship between matric potential and dielectric properties of organic free soils: a sensitivity study. Canadian Geotechnical Journal. 2009. V.46. №10. P.1202-1215. https://doi.org/10.1139/T09-055

11. Robinson D.A., Schaap M.G., Or D., Jones S.B. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials. Water Resources Research. 2005. V.41. №2. https://doi.org/10.1029/2004WR003816

12. Debai P. Polyarnye molekuly [Polar molecules]. Gnti. 1931. 247 p. (In Russian)

13. Hoekstra P., Delaney A. Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research. 1974. V.79. №11. P.1699-1708. https://doi.org/10.1029/JB079i011p01699

14. Bobrov P.P., Lapina A.S., Repin A. V. Effect of the rock/water/air interaction on the complex dielectric permittivity and electromagnetic waves attenuation in water-saturated sandstones. Journal of Geophysical Research. 2015. P.1877-1880.

15. Kupfer K. Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances. Springer Science & Business Media. 2005. 546 p.

16. Chen Y., Or D. Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resources Research. 2006. V.42. №6. P.1-14. https://doi.org/10.1029/2005WR004590

17. Revil A. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz-1GHz. Water Resources Research. 2013. V.49. №1. P.306-327. https://doi.org/10.1029/2012WR012700

18. Wagner N., Bore T., Robinet J.-C., Coelho D., Taillade F., Delepine-Lesoille S. Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach. Journal of Geophysical Research: Solid Earth. 2013. V.118. №9. P.4729-4744. https://doi.org/10.1002/jgrb.50343

19. Kruschwitz S., Prinz C., Zimathies A. Study into the correlation of dominant pore throat size and SIP relaxation frequency. Journal of Applied Geophysics. 2016. V.135. P.375-386. https://doi.org/10.1016/j.jappgeo.2016.07.007

20. Bircher S., Demontoux F., Razafindratsima S., Zakharova E., Drusch M., Wigneron J.-P., Kerr Y. L-band relative permittivity of organic soil surface layers–A new dataset of resonant cavity measurements and model evaluation. Remote Sensing. 2016. V.8. №12. P.1024. https://doi.org/10.3390/rs8121024

21. Ganjegunte G.K., Sheng Z., Clark J.A. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Applied Water Science. 2012. V.2. №2. P.119-125. https://doi.org/10.1007/s13201-012-0032-7

22. Stogryn A. Equations for calculating the dielectric constant of saline water (correspondence). IEEE transactions on microwave theory and Techniques. 1971. V.19. №8. P.733-736.

23. Birchak J.R., Gardner C.G., Hipp J.E., Victor J.M. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE. 1974. V.62. №1. P.93-98. https://doi.org/10.1109/PROC.1974.9388

 

For citation:

Karavayskiy A.Yu., Lukin Yu.I. Influence of relaxations in soil water on the temperature dependence of soil permittivity. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №1. https://doi.org/10.30898/1684-1719.2023.1.4 (In Russian)