Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.1.8

 

USING A NEURAL NETWORK, RADAR

AND MULTISPECTRAL OPTICAL DATA OF SENTINEL-1,2

for THE moisture monitoring of vegetation covered soil

 

A. M. Zeyliger 1, K.V. Muzalevskiy 2, E.V. Zinchenko 3, O.S. Ermolaeva 4

 

1Saratov State Vavilov Agrarian University Saratov
410012, Russia, Saratov, pr-kt im. Petra Stolypina, 4, b. 3
2Kirensky Institute of Physics SB RAS
660036, Russia, Krasnoyarsk, Akademgorodok, 50, str. №38

3All Russia Research Institute of Irrigated Agriculture
400002, Russia, Volgograd, ul. im. Timiryazeva, 9

4Russian State Agrarian University - MTAA named after Timiryazev

127550, Russia, Moscow, str. Timiryazevskaya, 49

 

The paper was received November 7, 2022.

 

Abstract. In this article, a method for the moisture monitoring of vegetation covered soil was proposed using neural network, radar and optical multispectral data of Sentinel-1,2. Test site was chosen in the Volgograd region at an agriculture field. The moisture retrieval algorithm is based on the use of a neural network to predict reflection coefficient of an electromagnetic wave from the soil, followed by inversion into soil moisture using a dielectric model that takes into account the soil texture. The input parameter of the neural network is the ratio of the microwave radar vegetation index (calculated on the basis of Sentinel-1 data) to the multispectral optical index (calculated on 8-11 channels of the Sentinel-2). Such way calculated index reveals a significantly greater dependence on soil moisture than on vegetation height. The retrieved values of soil moisture were compared with the moisture content of in-situ selected soil samples, which were measured under laboratory conditions by the thermostatic-weight method. The proposed method with a determination coefficient of 0.435 and a standard deviation of 2.4 % allows predicting the soil moisture content of a test area covered with vegetation, relative to soil moisture measured in-situ. The conducted research creates the scientific basis for a new all-weather technology for remote sensing the moisture content of agricultural soils as an element of the precision farming system.

Key words: radiolocation, soil moisture, neural networks, permittivity.

Financing: RFBR grant No. 19-29-05261, “Cartographic modeling of water contents in soil cover on the basis of a complex geophysical soil moisture measurements for the aim of digital irrigated agriculture.”

Corresponding author: Muzalevskiy Konstantin, rsdkm@ksc.krasn.ru

References

1. Oh Y., Sarabandi K., Ulaby F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing. 1992. V.30. №2. P.370-381.

2. Dubois P.C., van Zyl J., Engman T. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing. 1995. V.33. №4.
P.915-926.

3. Fung A.K., Li Z.Q., Chen K.S. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing. 1992. V.30. №2. P.356-369.

4. Choker M., Baghdadi N., Zribi M., El Hajj, et al. Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements. Water. 2017. V.9. №1. P.38.

5. Baghdadi N., Zribi M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing. 2006. V.27. №18. P.3831-3852.

6. Davidson M.W.J., Le Toan T., Mattia F., et al. On the characterization of agricultural soil roughness for radar remote sensing studies. IEEE Transactions on Geoscience and Remote Sensing. 2000. V.38. №2. P.630-640.

7. Baghdadi N., King C., Chanzy A., Wigneron J.P. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils. Int. Journal of Remote Sensing. 2002. V.23. №20. P.4325-4340.

8. Panciera R., Tanase M.A., Lowell K., Walker J.P. Evaluation of IEM, Dubois, and Oh Radar Backscatter Models Using Airborne L-Band SAR. IEEE Transactions on Geoscience and Remote Sensing. 2014. V.52. №8. P.4966-4979.

9. Ayehu G., Tadesse T., Gessesse B., Yigrem Y.M., Melesse A. Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Sensors. 2020. V.20. №11. P.1-23.

10. Mirsoleimani H.R., Sahebi M.R., Baghdadi N., El Hajj M. Bare Soil Surface Moisture Retrievalfrom Sentinel-1 SAR Data Based on the Calibrated IEM and Dubois Models Using Neural Networks. Sensors. 2019. V.19. №14. P.1-12.

11. Hachani A., Ouessar M., Paloscia S., Santi E., Pettinato S. Soil moisture retrieval from Sentinel-1 acquisitions in an arid environment in Tunisia: application of Artificial Neural Networks techniques. International Journal of Remote Sensing. 2019. V.40. №24. P.1-22.

12. Li Y., Yan S., Chen N., Gong J. Performance Evaluation of a Neural Network Model and Two Empirical Models for Estimating Soil Moisture Based on Sentinel-1 SAR Data. Progress In Electromagnetics Research C. 2020. V.105. P.85-99.

13. Shutko A.M., Chukhlantsev A.A. Microwave radiation peculiarities of vegetative covers. IEEE Trans. Geosci. Remote Sensing. 1982. V.20. P.27-29.

14. Chukhlantsev A. A., Shutko A.M. Microwave attenuation spectra of forest crowns. XXXth URSI General Assembly and Scientific Symposium. Istanbul. 2011. P.1-3.

15. Jackson T.J., Schmugge T.J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment. 1991. V.36. №3. P.203-212.

16. Rodionova N.V., Kudryashova S.YA., Chumbaev A.S. Estimation of some parameters of the upper soil layer by radar and optical data of sentinel 1/2 satellites in conditions of the Novosibirsk region. Issledovanie Zemli iz Kosmosa [Earth exploration from space]. 2022. №1. P.68-79. (In Russian)

17. Bao Y., Lin L., Wu S., et al. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation. 2018. V.72. P.76-85.

18. Park S.-E., et al. Theoretical Evaluation of Water Cloud Model Vegetation Parameters. Remote Sensing. 2019. V.11. №8. P.894.

19. Yadav V.P., Prasad R., Bala R., Vishwakarma A.K. Estimation of soil moisture through water cloud model using sentinel -1A SAR data. IEEE International Geoscience and Remote Sensing Symposium. 2019. P.6961-6964.

20. Bai X. et al. First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote Sensing. 2017. V.9. №7. P.714.

21. Paloscia S., Pettinato S., Santi E., Notarnicola C., Pasolli L., Reppucci A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment. 2013. V.134. P.234-248.

22. Nativel S., et al. Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation. Remote Sens. 2022. V.14. P.2434.

23. Reza A., et al. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sensing. 2018. V.10. №8. P.1285.

24. Mironov V.L., Bobrov P.P., Fomin S.V. Dielectric model of moist soils with varying clay content in the 0.04 to 26.5 GHz frequency range. International Siberian Conference on Control and Communications (SIBCON). 2013. P.1-4.

 

 

For citation:

Zeyliger A.M., Muzalevskiy K.V., Zinchenko E.V., Ermolaeva O.S. Using a neural network, radar and multispectral optical data of Sentinel-1,2 for the moisture monitoring of vegetation covered soil. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №1. https://doi.org/10.30898/1684-1719.2023.1.8 (In Russian)