Journal of Radio Electronics. eISSN 1684-1719. 2024. №1
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.1.12
operation regimes SWITCHING
OF ERBIUM FIBRE LASERS
A.M. Smirnov, A.V. Dorofeenko, O.V. Butov
Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11, b.7
The paper was received November 26, 2023
Abstract. Operation features of the erbium fiber lasers with short cavities near two phase transitions have been established experimentally for the first time. The power-law behavior of the system parameters in the vicinity of the critical point in a wide range of pump power values was revealed. The parameters and operation regimes dependence on the cavity length and pump power, namely the switching from pulsed to CW operation, was investigated. The pulse duration and frequency dependencies with varying cavity length have been investigated, which made it possible to experimentally establish the universal dependence of these parameters on the lasing power for passively Q-switched erbium fiber lasers. The critical indices for pulsed operation of the erbium fiber lasers are determined weakly depending on the cavity parameters. The results of the study can be used for designing high-coherent fiber laser sources.
Key words: erbium fiber lasers, passive Q-switching, critical indices.
Financing: The work was performed within the framework of the state assignment of the IRE named after V.A.Kotelnikov of the Russian Academy of Sciences.
Corresponding author: Alexander Mikhailovich Smirnov, alsmir1988@mail.ru
References
1. Wang H., Zhou J., Xing Z., Feng Q., Zhang K., Zheng K., Chen X., Gui T., Li L., Zeng J. Fast-Convergence Digital Signal Processing for Coherent PON using Digital SCM // Journal of Lightwave Technology. ‒ 2023.
2. Berti N., Coen S., Erkintalo M., Fatome J. Extreme waveform compression with a nonlinear temporal focusing mirror // Nature Photonics. ‒ 2022. ‒ T. 16, № 12. ‒ C. 822-827.
3. van Veen D., Houtsma V. Strategies for economical next-generation 50G and 100G passive optical networks // Journal of Optical Communications and Networking. ‒ 2020. ‒ T. 12, № 1. ‒ C. A95-A103.
4. Zhou J., Sui Q., Li Z. Non-orthogonal discrete multi-tone: toward higher spectral efficiency for optical networks // IEEE Communications Magazine. ‒ 2021. ‒ T. 59, № 10. ‒ C. 70-75.
5. Liu X. Evolution of fiber-optic transmission and networking toward the 5G era // Iscience. ‒ 2019. ‒ T. 22. ‒ C. 489-506.
6. Zhao Q., Pei L., Zheng J., Tang M., Xie Y., Li J., Ning T. Tunable and interval-adjustable multi-wavelength erbium-doped fiber laser based on cascaded filters with the assistance of NPR // Optics & Laser Technology. ‒ 2020. ‒ T. 131. ‒ C. 106387.
7. Mizrahi V., DiGiovanni D. J., Atkins R. M., Grubb S. G., Park Y.-K., Delavaux J.-M. Stable single-mode erbium fiber-grating laser for digital communication // Journal of Lightwave technology. ‒ 1993. ‒ T. 11, № 12. ‒ C. 2021-2025.
8. Bellemare A. Continuous-wave silica-based erbium-doped fibre lasers // Progress in Quantum Electronics. ‒ 2003. ‒ T. 27, № 4. ‒ C. 211-266.
9. Bradley J. D. B., Pollnau M. Erbium‐doped integrated waveguide amplifiers and lasers // Laser & Photonics Reviews. ‒ 2011. ‒ T. 5, № 3. ‒ C. 368-403.
10. Brida D., Krauss G., Sell A., Leitenstorfer A. Ultrabroadband Er: fiber lasers // Laser & Photonics Reviews. ‒ 2014. ‒ T. 8, № 3. ‒ C. 409-428.
11. Kringlebotn J. T., Archambault J.-L., Reekie L., Townsend J. E., Vienne G. G., Payne D. N. Highly-efficient, low-noise grating-feedback Er/sup 3+: Yb/sup 3+/codoped fibre laser // Electronics Letters. ‒ 1994. ‒ T. 30, № 12. ‒ C. 972-973.
12. Weber J. K. R., Felten J. J., Cho B., Nordine P. C. Glass fibres of pure and erbium-or neodymium-doped yttria–alumina compositions // Nature. ‒ 1998. ‒ T. 393, № 6687. ‒ C. 769-771.
13. Park N., Dawson J. W., Vahala K. J. Multiple wavelength operation of an erbium-doped fiber laser // IEEE Photonics Technology Letters. ‒ 1992. ‒ T. 4, № 6. ‒ C. 540-541.
14. Van Putten L. D., Masoudi A., Brambilla G. 100-km-sensing-range single-ended distributed vibration sensor based on remotely pumped Erbium-doped fiber amplifier // Optics Letters. ‒ 2019. ‒ T. 44, № 24. ‒ C. 5925-5928.
15. Jin R., Yuan Z., Wu Y., Wang C. Study on Dual-wavelength Wide-spectrum Erbium-doped Fiber Ring Laser for Optical Fiber Interferometric Sensing System // Journal of Lightwave Technology. ‒ 2023.
16. Wang Y., Wang Y., He C., Liu X., Bai Q., Jin B. 190km Φ-OTDR with bidirectional Raman and relay erbium-doped fiber hybrid amplification // Optics and Lasers in Engineering. ‒ 2023. ‒ T. 166. ‒ C. 107569.
17. Lin W., Zhao F., Shao L.-Y., Vai M. I., Shum P. P., Sun S. Temperature sensor based on Er-doped cascaded-peanut taper structure in-line interferometer in fiber ring laser // IEEE Sensors Journal. ‒ 2021. ‒ T. 21, № 19. ‒ C. 21594-21599.
18. Mądry M., Alwis L., Binetti L., Pajewski Ł., Bereś-Pawlik E. Simultaneous measurement of temperature and relative humidity using a dual-wavelength erbium-doped fiber ring laser sensor // IEEE Sensors Journal. ‒ 2019. ‒ T. 19, № 20. ‒ C. 9215-9220.
19. Ames G. H., Maguire J. M. Erbium fiber laser accelerometer // IEEE Sensors Journal. ‒ 2007. ‒ T. 7, № 4. ‒ C. 557-561.
20. Melle S. M., Alavie A. T., Karr S., Coroy T., Liu K., Measures R. M. A Bragg grating-tuned fiber laser strain sensor system // IEEE Photonics Technology Letters. ‒ 1993. ‒ T. 5, № 2. ‒ C. 263-266.
21. Foster S., Tikhomirov A., Milnes M., Van Velzen J., Hardy G. A fiber laser hydrophone // 17th International Conference on Optical Fibre Sensors. ‒ T. 5855 ‒International Society for Optics and Photonics, 2005. ‒ C. 627-630.
22. Hill D. J., Nash P. J., Jackson D. A., Webb D. J., O'neill S., Bennion I., Zhang L. Fiber laser hydrophone array // Fiber Optic Sensor Technology and Applications. ‒ T. 3860 ‒International Society for Optics and Photonics, 1999. ‒ C. 55-66.
23. Khaleel W. A., Al-Janabi A. H. M. High-sensitivity sucrose erbium-doped fiber ring laser sensor // Optical Engineering. ‒ 2017. ‒ T. 56, № 2. ‒ C. 026116.
24. Buis E. J., Doppenberg E. J. J., Nieuwland R. A., Toet P. M. Fibre laser hydrophones for cosmic ray particle detection // Journal of Instrumentation. ‒ 2014. ‒ T. 9, № 03. ‒ C. C03051.
25. Likhachev M. E., Bubnov M. M., Zotov K. V., Lipatov D. S., Yashkov M. V., Guryanov A. N. Effect of the AlPO 4 join on the pump-to-signal conversion efficiency in heavily Er-doped fibers // Optics letters. ‒ 2009. ‒ T. 34, № 21. ‒ C. 3355-3357.
26. Paul M., Kir’Yanov A., Barmenkov Y., Pal M., Youngman R., Dhar A., Das S. Phase-separated alumina–silica glass-based erbium-doped fibers for optical amplifier: material and optical characterization along with amplification properties // Fibers. ‒ 2018. ‒ T. 6, № 3. ‒ C. 67.
27. Sanchez F., Le Boudec P., François P.-L., Stephan G. Effects of ion pairs on the dynamics of erbium-doped fiber lasers // Physical Review A. ‒ 1993. ‒ T. 48, № 3. ‒ C. 2220.
28. Sanchez F., Stephan G. General analysis of instabilities in erbium-doped fiber lasers // Physical Review E. ‒ 1996. ‒ T. 53, № 3. ‒ C. 2110.
29. Le Boudec P., Francois P. L., Delevaque E., Bayon J.-F., Sanchez F., Stephan G. M. Influence of ion pairs on the dynamical behaviour of Er 3+-doped fibre lasers // Optical and quantum electronics. ‒ 1993. ‒ T. 25, № 8. ‒ C. 501-507.
30. Smirnov A. M., Butov O. V. Pump and thermal impact on heavily erbium-doped fiber laser generation // Optics Letters. ‒ 2021. ‒ T. 46, № 1. ‒ C. 86-89.
31. Smirnov A. M., Bazakutsa A. P., Chamorovskiy Y. K., Nechepurenko I. A., Dorofeenko A. V., Butov O. V. Thermal switching of lasing regimes in heavily doped Er3+ fiber lasers // ACS Photonics. ‒ 2018. ‒ T. 5, № 12. ‒ C. 5038-5046.
32. Smirnov A. M., Bazakutsa A. P., Butov O. V. Temperature and Pump Dependent Operation of Short-cavity Erbium-doped Fiber Laser // 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring) ‒IEEE, 2019. ‒ C. 741-744.
33. Feng T., Wang M., Wang X., Yan F., Suo Y., Yao X. S. Switchable 0.612-nm-spaced dual-wavelength fiber laser with sub-kHz linewidth, ultra-high OSNR, ultra-low RIN, and orthogonal polarization outputs // Journal of Lightwave Technology. ‒ 2019. ‒ T. 37, № 13. ‒ C. 3173-3182.
34. Iwatsuki K., Okamura H., Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth // Electronics Letters. ‒ 1990. ‒ T. 24, № 26. ‒ C. 2033-2035.
35. Pan Z., Ye Q., Cai H., Qu R., Fang Z. Fiber ring with long delay used as a cavity mirror for narrowing fiber laser // IEEE Photonics Technology Letters. ‒ 2014. ‒ T. 26, № 16. ‒ C. 1621-1624.
36. Fu S., Shi W., Feng Y., Zhang L., Yang Z., Xu S., Zhu X., Norwood R., Peyghambarian N. Review of recent progress on single-frequency fiber lasers // JOSA B. ‒ 2017. ‒ T. 34, № 3. ‒ C. A49-A62.
37. Rybaltovsky A., Sverchkov S., Vel'miskin V., Przhiialkovskii D., Bazakutsa A., Galagan B., Denker B., Butov O. Single-frequency continuous-wave laser based on the novel Er/Yb-doped composite phospcosilicate fiber // Optics & Laser Technology. ‒ 2022. ‒ T. 151. ‒ C. 108049.
38. Bradley J. D., Pollnau M. Erbium‐doped integrated waveguide amplifiers and lasers // Laser & Photonics Reviews. ‒ 2011. ‒ T. 5, № 3. ‒ C. 368-403.
39. Weber J. R., Felten J. J., Cho B., Nordine P. C. Glass fibres of pure and erbium-or neodymium-doped yttria–alumina compositions // Nature. ‒ 1998. ‒ T. 393, № 6687. ‒ C. 769-771.
40. Huang M.-F., Salemi M., Chen Y., Zhao J., Xia T. J., Wellbrock G. A., Huang Y.-K., Milione G., Ip E., Ji P. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network // Journal of Lightwave Technology. ‒ 2019. ‒ T. 38, № 1. ‒ C. 75-81.
41. Pérez-Herrera R. A., Quintela M. A., Fernández-Vallejo M., Quintela A., López-Amo M., López-Higuera J. M. Stability comparison of two ring resonator structures for multiwavelength fiber lasers using highly doped Er-fibers // Journal of Lightwave Technology. ‒ 2009. ‒ T. 27, № 14. ‒ C. 2563-2569.
42. Keller U. Recent developments in compact ultrafast lasers // nature. ‒ 2003. ‒ T. 424, № 6950. ‒ C. 831-838.
43. Yatseev V., Zotov A., Butov O. Combined frequency and phase domain time-gated reflectometry based on a fiber with reflection points for absolute measurements // Results in Physics. ‒ 2020. ‒ T. 19. ‒ C. 103485.
44. Stepanov K. V., Zhirnov A. A., Chernutsky A. O., Koshelev K. I., Pnev A. B., Lopunov A. I., Butov O. V. The sensitivity improvement characterization of distributed strain sensors due to weak fiber Bragg gratings // Sensors. ‒ 2020. ‒ T. 20, № 22. ‒ C. 6431.
45. Butov O. V., Bazakutsa A. P., Chamorovskiy Y. K., Fedorov A. N., Shevtsov I. A. All-fiber highly sensitive Bragg grating bend sensor // Sensors. ‒ 2019. ‒ T. 19, № 19. ‒ C. 4228.
46. Tomyshev K., Manuilovich E., Tazhetdinova D., Dolzhenko E., Butov O. V. High-precision data analysis for TFBG-assisted refractometer // Sensors and Actuators A: Physical. ‒ 2020. ‒ T. 308. ‒ C. 112016.
47. Tomyshev K. A., Tazhetdinova D. K., Manuilovich E. S., Butov O. V. High-resolution fiber optic surface plasmon resonance sensor for biomedical applications // Journal of Applied Physics. ‒ 2018. ‒ T. 124, № 11. ‒ C. 113106.
48. Cranch G. A., Flockhart G. M., Kirkendall C. K. Distributed feedback fiber laser strain sensors // IEEE Sensors Journal. ‒ 2008. ‒ T. 8, № 7. ‒ C. 1161-1172.
49. Ideguchi T., Poisson A., Guelachvili G., Picqué N., Hänsch T. W. Adaptive real-time dual-comb spectroscopy // Nature communications. ‒ 2014. ‒ T. 5, № 1. ‒ C. 3375.
50. Dahmani B., Hollberg L., Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback // Optics letters. ‒ 1987. ‒ T. 12, № 11. ‒ C. 876-878.
51. Laurent P., Clairon A., Breant C. Frequency noise analysis of optically self-locked diode lasers // IEEE Journal of Quantum Electronics. ‒ 1989. ‒ T. 25, № 6. ‒ C. 1131-1142.
52. Alnis J., Matveev A., Kolachevsky N., Udem T., Hänsch T. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities // Physical Review A. ‒ 2008. ‒ T. 77, № 5. ‒ C. 053809.
53. Yla-Jarkko K., Grudinin A. Performance limitations of high-power DFB fiber lasers // IEEE Photonics Technology Letters. ‒ 2003. ‒ T. 15, № 2. ‒ C. 191-193.
54. Butov O. V., Rybaltovsky A. A., Bazakutsa A. P., Golant K. M., Vyatkin M. Y., Popov S. M., Chamorovskiy Y. K. 1030 nm Yb 3+ distributed feedback short cavity silica-based fiber laser // JOSA B. ‒ 2017. ‒ T. 34, № 3. ‒ C. A43-A48.
55. Nechepurenko I. A., Dorofeenko A. V., Butov O. V. Optimal defect position in a DFB fiber laser // Optics Express. ‒ 2021. ‒ T. 29, № 9. ‒ C. 13657-13668.
56. Golant K. Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review) // XXI International Congress on Glass ‒, 2007. ‒.
57. Lægsgaard J. Dissolution of rare-earth clusters in SiO 2 by Al codoping: a microscopic model // Physical Review B. ‒ 2002. ‒ T. 65, № 17. ‒ C. 174114.
58. Monteil A., Chaussedent S., Alombert-Goget G., Gaumer N., Obriot J., Ribeiro S. J., Messaddeq Y., Chiasera A., Ferrari M. Clustering of rare earth in glasses, aluminum effect: experiments and modeling // Journal of Non-Crystalline Solids. ‒ 2004. ‒ T. 348. ‒ C. 44-50.
59. Dardaillon R., Palermo C., Lancry M., Myara M., Kribich R. K., Signoret P. Accurate modeling of radiation-induced absorption in Er-Al–doped silica fibers exposed to high-energy ionizing radiations // Optics Express. ‒ 2020. ‒ T. 28, № 4. ‒ C. 4694-4707.
60. Zyskind J. L., Mizrahi V., DiGiovanni D. J., Sulhoff J. W. Short single frequency erbium-doped fibre laser // Electronics Letters. ‒ 1992. ‒ T. 28, № 15. ‒ C. 1385-1387.
61. Loh W. Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping // Optics Letters. ‒ 1996. ‒ T. 21, № 10. ‒ C. 734-736.
62. Le Boudec P., Francois P., Delevaque E., Bayon J.-F., Sanchez F., Stephan G. Influence of ion pairs on the dynamical behaviour of Er 3+-doped fibre lasers // Optical and Quantum Electronics. ‒ 1993. ‒ T. 25, № 8. ‒ C. 501-507.
63. Siegman A. E. Lasers. Mill Valley, CA: Univ // Science. ‒ 1986. ‒ C. 298-301.
64. Principles of lasers. / Svelto O., Hanna D. C.: Springer, 1998.
65. Okhotnikov O., Salcedo J. Stable relaxation-oscillation Er/sup 3+/-doped fiber laser // IEEE photonics technology letters. ‒ 1994. ‒ T. 6, № 3. ‒ C. 369-371.
66. Jhon Y.-M., Kim B.-K., Kim D.-H., Kim M.-W., Kim S.-K., Choi S.-S. In situ cavity loss measurements of a mode-locked erbium-doped fiber ring laser by thed relaxation oscillation frequency method // Journal of the Optical Society of Korea. ‒ 2000. ‒ T. 4, № 1. ‒ C. 11-13.
67. Shinya T. M., Gupta S. G. S., Shimomura T. S. T. Relaxation oscillations in fiber-grating-tuned erbium-doped fiber lasers // Japanese journal of applied physics. ‒ 1997. ‒ T. 36, № 12R. ‒ C. 7207.
68. Laser light dynamics. / Haken H.: North-Holland Amsterdam, 1985.
69. Scott J., Sargent III M., Cantrell C. Laser-phase transition analogy: Application to first-order transitions // Optics Communications. ‒ 1975. ‒ T. 15, № 1. ‒ C. 13-16.
For citation:
Smirnov A.M., Dorofeenko A.V., Butov O.V. Operation regimes switching of erbium fibre lasers. // Journal of Radio Electronics. – 2024. – №. 1. https://doi.org/10.30898/1684-1719.2024.1.12 (In Russian)