

DOI: https://doi.org/10.30898/1684-1719.2024.1.5

УДК: 621.396.62; 004.032.26

ЦИФРОВОЙ РАДИОПРИЁМНИК НА ОСНОВЕ НЕЙРОННОЙ СЕТИ

В.В. Евстратько, А.И. Коноваленко, А.В. Мишуров, А.Д. Юхманов

Сибирский федеральный университет 660041, Красноярский край, г. Красноярск, пр. Свободный, 79

Статья поступила в редакцию 15 ноября 2023 г.

Аннотация. направлений цифровой обработки Одним ИЗ сигнала, в радиоприёмниках и исследуемых в настоящее применяемых является применение искусственных нейронных сетей. Приём сигналов – одна наиболее сложных теоретических И инженерных задач передачи сообщений. Сложность состоит TOM, что сообщения необходимо извлекать из модулированных сигналов, которые в радиоканале подвергаются воздействиям различных искажающих факторов и помех. Поэтому желательно располагать методами приёма, которые были бы наилучшими (оптимальными) в данных конкретных условиях. Существует множество различных топологий нейронных сетей. Известны, однослойные многослойные прямого И распространения – персептроны, рекуррентные сети, самоорганизующиеся сети, гибридного (радиально-базисные, также сети вида иерархические a классификаторы). Каждый из перечисленных видов топологий обладает своими преимуществами и недостатками. В статье проводится анализ текущих разработок исследований данной области. Показана реализация В радиоприёмника (демодулятора) на основе многослойного персептрона и проведено обучение нейронной сети. С применением оборудования National стандарта РХІ проведено исследование, которое что в сравнении с оптимальным приёмником, вероятность битовой ошибки у приёмника на основе нейронной сети выше. Работа приёмника при воздействии

гармонических помех показала, что при увеличении мощности помехи, вероятность ошибки *BER* возрастает, и чем ближе помеха к несущей частоте, тем *BER* так же становится выше. Тем не менее, исследуемый цифровой приёмник на основе нейронной сети сохраняет работоспособность при значительных уровнях помех, находящихся достаточно близко к несущей частоте полезного сигнала.

Ключевые слова: цифровая обработка сигнала, радиоприёмник, демодулятор, нейронная сеть, многослойный персептрон, помехоустойчивость, оптимальный прием радиосигналов.

Финансирование: исследование выполнено в рамках государственного задания ФГАОУ ВО Сибирский федеральный университет (номер FSRZ-2023-0008).

Автор для переписки: Мишуров Андрей Валериевич, AMishurov@sfu-kras.ru

Введение

Цифровая обработка сигналов (ЦОС) – это одно из наиболее динамично развиваемых и перспективных направлений современной радиотехники. Важнейшими свойствами ЦОС являются высокая точность, технологичность, устойчивость к дестабилизирующим факторам, функциональная гибкость. Поэтому удельный вес ЦОС в радиоэлектронных устройствах и системах по мере повышения ее быстродействия и снижения стоимости все более возрастает. Методами ЦОС [1] являются математические соотношения или алгоритмы, в соответствии с которыми выполняются вычислительные операции над цифровыми сигналами. К ним относятся алгоритмы цифровой фильтрации, спектрально-корреляционного анализа, модуляции и демодуляции сигналов, адаптивной обработки. Алгоритмы ЦОС, в отличие от других вычислений на ЭВМ, предусматривают, как правило, их выполнение в реальном масштабе времени. Одним из направлений ЦОС исследуемых в настоящее время, это применение в данной области искусственных нейронных сетей [2].

Проанализируем текущее состояние разработок в данном направлении, рассмотрим реализацию радиоприемника на основе многослойного персептрона и исследуем устройство на помехоустойчивость.

1. Анализ

В научной статье С.Н. Данилина [3] проведены исследования различных алгоритмов проектирования искусственных нейронных сетей (ИНС). Данная тема на сегодняшний день актуальна в разработке более эффективных подходов анализа параметров гармонических сигналов. Существует ряд инструментов статистической теории радиотехнических систем, позволяющих проводить оценку таких параметров, как амплитуда, фаза, частота сигнала, как для непрерывной выборки, так и для дискретной. В случаях, когда плотность вероятностей распределения информативных параметров λ сигнала y(t)неизвестна, считают ее равномерной в некотором диапазоне значений и, для нахождения оценок его параметров λ_{MII} применяют метод максимального правдоподобия [4].

Решение данных уравнений является трудоемким процессом и возлагает ограничения, как по быстродействию, так и по точности устройств обработки. Обзор отечественных и зарубежных научно — технических публикаций [5-9] показывает, что потенциальная точность обработки и преобразования информации нейросетевыми алгоритмами выше, чем их аналогами с классической фон-неймановской архитектурой для широкого круга задач. Однако несовершенство методов инженерного проектирования ИНС зачастую приводит к тому, что достигнутая на этапе компьютерного моделирования точность не обеспечивается в реальных условиях эксплуатации при воздействии внутренних или внешних дестабилизирующих факторов.

Применение нейронной сети для «сжатия» последовательности радиоимпульсов с внутриимпульсной частотной модуляцией приведено в статье [10]. Процесс сжатия входного радиосигнала осуществляется путем

согласованной с частотой внутриимпульсной модуляции задержки его спектральных составляющих с последующим их когерентным сложением.

Особенность данного обработчика в том, что здесь в роли линий задержек выступают аксоны нейронов. Аксоны — это элементы передачи сигналов между нейронами.

Описанный в статье метод обработки широкополосных сигналов на базе динамических нейронных сетей может быть применен в радиолокации для обнаружения последовательности частотно-модулированных сигналов.

В статье [11] предложен способ демодуляции цифрового сигнала на основе сверточной нейронной сети (Convolution Neural Networks, CNN) с глубоким обучением. Преимущество данного демодулятора от традиционных заключается в том, что он не зависит от информации о состоянии канала. Он состоит из кодера и декодера, в котором кодер кодирует входную последовательность символов и отображает признаки сигнала в пространство скрытого слоя. Затем декодер декодирует признаки пространства скрытого слоя, чтобы получить результат демодуляции входной последовательности. Предлагаемый алгоритм может автоматически научиться демодулировать принятый сигнал без ручного извлечения признаков. По сравнению с традиционным демодулятором предлагаемый демодулятор CNN имеет лучшую производительность по коэффициенту ошибок по битам ($bit\ error\ rate-BER$).

CNN в основном используются для обработки изображений и видео. Они представляют собой глубокие нейронные сети, которые используют различные методы уменьшения вычислительной сложности, чтобы достичь своей цели обучения.

Существует множество различных топологий нейронных сетей. Известны, например, однослойные и многослойные прямого распространения — персептроны, рекуррентные сети, самоорганизующиеся сети, а также сети гибридного вида (радиально-базисные, иерархические классификаторы). Каждый из перечисленных видов топологий обладает своими преимуществами и недостатками, рассмотрим реализацию демодулятора на основе

многослойного персептрона. Для упрощения анализа целесообразности введения ИНС в приемную часть проводится рассмотрение системы без использования помехоустойчивого кодирования, с исправлением ошибок Рида-Соломона (РС), применяющегося для дополнительного повышения помехоустойчивости радиоканала.

2. Реализация цифрового радиоприёмника (демодулятора) на основе нейронной сети

2.1. Разработка архитектуры радиоприёмника

Прием сигналов – одна из наиболее сложных теоретических и инженерных задач передачи сообщений. Сложность состоит в том, что сообщения необходимо извлекать из модулированных сигналов, которые в радиоканале подвергаются воздействиям различных искажающих факторов и помех. Поэтому желательно располагать методами приема, которые были бы наилучшими (оптимальными) в данных конкретных условиях.

В разрабатываемом цифровом приемнике применена архитектура нейронной сети на основе многослойного персептрона (см. рис. 1). Структура инициализации ИНС (определение количества входных — X1...X16, скрытых и выходных узлов — Y1); сформированы начальные массивы весовых коэффициентов связей между входным и скрытым слоем, скрытым и выходным слоем НС (наиболее важная часть НС, использующаяся для расчета распространения сигналов в прямом направлении, а также обратном распространении ошибки), определялись они случайным образом и выбирались из диапазона 0 < w < 1; задан коэффициент обучения, равный $\varepsilon = 0,05$ (определяет допустимую погрешность от желаемого результата). Входной слой был сформирован из 16 входных параметров, которые были определены исходя из выбранной дискретности входного сигнала.

Практическая реализация приемника и его исследование проводилось с использованием оборудования фирмы *National Instruments* стандарта *PXI*.

PXIe-5663, Векторный анализатор который представляет собой преобразователь состоящий квадратурный сигналов, ИЗ понижающего конвертора и АЦП. В результате аналого-цифрового преобразования сигнал преобразуется в цифровой код, после чего по шине РХІ цифровой код передается в модуль ПЛИС 1 (*PXIe-*7966*R*), в котором записана программа демодуляции и декодирования сигнала в реальном времени на основе нейронной сети. Также по шине *PXI* для дальнейшего анализа информационный сигнал с выхода модуля ПЛИС 1 передается в РХІ-ЭВМ РХІе-8135.

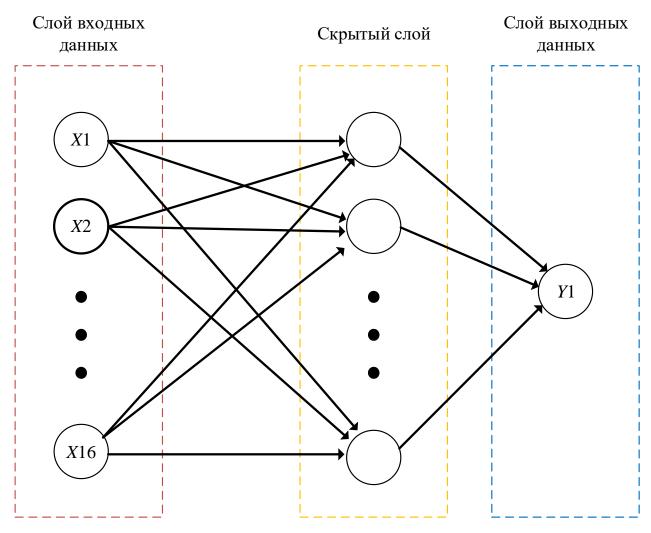


Рис. 1. Структурная схема реализуемого персептрона НС.

Функцию управления потоками данных по шине PXI выполняет контроллер шины PXI по заранее разработанным сценариям. Модуль ПЛИС 2 (PXIe-7966R), который генерирует цифровой сигнал в соответствии с выбранным типом модуляции и помехоустойчивого кодирования. Далее цифровой сигнал

передается по шине *PXI* в векторный генератор *PXIe-*5673*E*, который представляет собой ЦАП, совмещенный с квадратурным преобразователем частоты. Векторный генератор формирует аналоговый модулированный сигнал.

Для разработки программного обеспечения использована среда графического программирования *LabVIEW*, а для разработки программного обеспечения ПЛИС использована среда *LabVIEW FPGA*.

2.2. Обучение НС

Для обучения нейронной сети было сформировано 10 тысяч выборок модулированного *BPSK* сигнала, с длительностью одного информационного символа 4 периода.

В результате проведенного обучения, благодаря алгоритму обратного распространения ошибки, нейросетью были скорректированы весовые коэффициенты. Рассмотрим результаты работы демодуляции сигнала представленные на рис. 2, 3 и 4. Смесь входного сигнала с шумом была использована с разным соотношением SNR = 0 dB, 3 dB и 6 dB.

График №1 на рис. 2 показывает поступающую смесь сигнала с шумом, график №2 показывает данные, которые подаются на вход модулятора, график 3 показывает данные на выходе нейросети. Из данных, представленных на графике №3, видно, что при ОСШ = 0 dB, нейронная сеть осуществляет демодуляцию с ошибками.

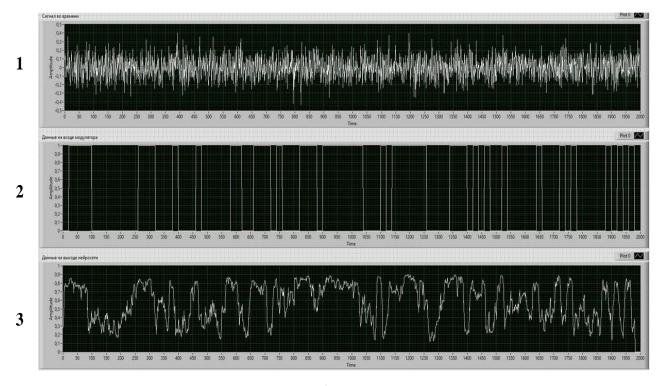


Рис. 2. Демодулированный цифровой сигнал при ОСШ = 0 dB.

Аналогично рис. 2 на рис. 3 и рис. 4 показаны смесь сигнала с шумом (график 1), данные, которые подаются на вход модулятора (график 2). Из данных представленных на графике №3 рис. 3 и рис. 4 видно, что с увеличением ОСШ, нейронная сеть производит демодуляцию сигнала и ошибки уменьшаются.

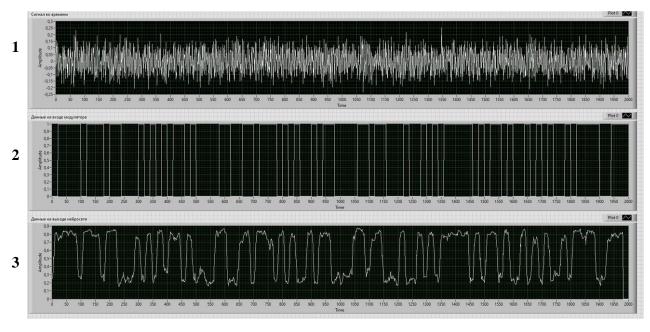


Рис. 3. Демодулированный цифровой сигнал при ОСШ = 3 dB.

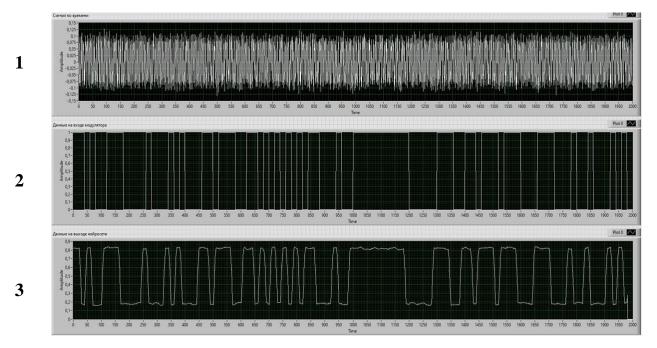


Рис. 4. Демодулированный цифровой сигнал при ОСШ = 6 dB.

2.3. Исследование приемника на помехоустойчивость при воздействии шумов

При модуляции *BPSK* (рис. 5) принятый сигнал может быть записан в виде:

$$y = x + n, (1)$$

где x – модулированный BPSK сигнал; n – это белый гауссовский шум.

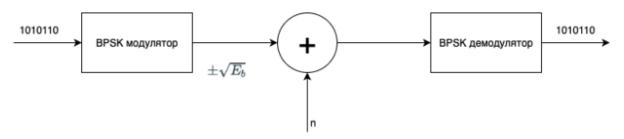


Рис. 5. Схема модуляции/демодуляции сигнала *BPSK* с добавлением шума.

В начале сообщение кодируется в аналоговый сигнал. Информационный символ «1» записывается в $+\sqrt{E_b}$, «0» записывается в $-\sqrt{E_b}$. После модулированный сигнал складывается с аддитивным белым гауссовским шумом, далее сигнал демодулируется. На рис. 6 уровень шума достаточно низкий, все синие точки достаточно далеко расположены от 0, что позволяет однозначно

восстановить переданную информацию, а вот на рис. 7 при более высоком уровне шума все становится не так однозначно.

Частота получения ошибочных битов (BER) определяется гауссовской функцией вероятности:

$$P(x) = \frac{1}{\sqrt{\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}.$$
 (2)

Параметры Гауссовского шума определяются как $\mu = 0$ — среднее значение; $\sigma^2 = N_0 / 2$ — квадрат среднеквадратичного отклонения при спектральной плотности шума N_0 .

При передаче «1» $\mu = +\sqrt{E_b}$, при «0» $\mu = -\sqrt{E_b}$, подставив это в формулу (2) получаем:

$$P(x|s_0) = \frac{1}{\sqrt{\pi N_0}} e^{\frac{-(x+\sqrt{E_b})^2}{N_0}};$$
(3)

$$P(x|s_1) = \frac{1}{\sqrt{\pi N_0}} e^{\frac{-(x - \sqrt{E_b})^2}{N_0}}.$$
 (4)

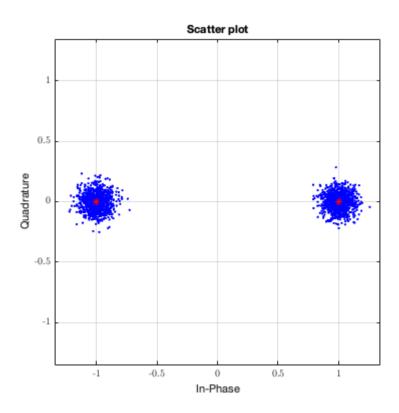


Рис. 6. Созвездие модулированного *BPSK* сигнала. Красными точками обозначен сигнал без шума, синими — сигнал с добавлением шума.

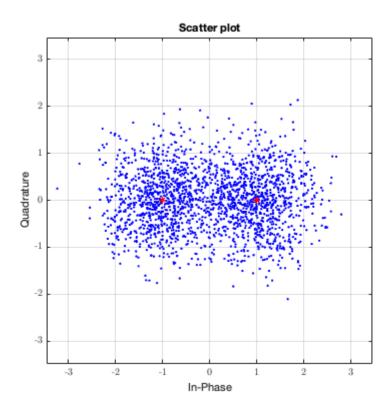


Рис. 7. Созвездие модулированного *BPSK* сигнала. Красными точками обозначен сигнал без шума, синими — сигнал с добавлением шума.

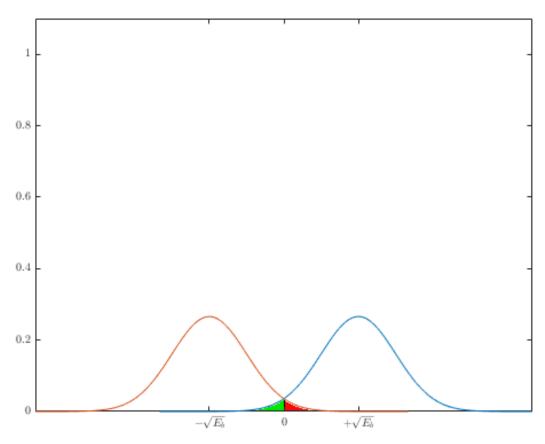


Рис. 8. Область возникновения ошибки.

На рис. 8 показаны области возникновения ошибки. Зеленая область — это место, где возникает ошибка при передаче «1», красная — при передаче «0». Общую вероятность ошибки можно записать с помощью формулы полной вероятности:

$$P(error|s_0) = \frac{1}{2}P(error|s_0) + \frac{1}{2}P(error|s_1). \tag{5}$$

Каждая из вероятностей будет равна:

$$P(error|s_0) = \int_0^\infty P(x|s_0) dx = \frac{1}{\sqrt{\pi N_0}} \int_0^\infty e^{\frac{-(x+\sqrt{E_b})^2}{N_0}},$$
 (6)

$$P(error|s_1) = \int_{-\infty}^{0} P(x|s_0) dx = \frac{1}{\sqrt{\pi N_0}} \int_{-\infty}^{0} e^{\frac{-(x - \sqrt{E_b})^2}{N_0}}.$$
 (7)

Для оценки помехоустойчивости приемника на основе нейросети, необходимо построить график зависимости вероятности ошибки от отношения энергии сигнала (E_b) и энергетической плотности шума (N_0) E_b / N_0 и сравнить полученный результат с оптимальным приемником BPSK (см. рис. 9).

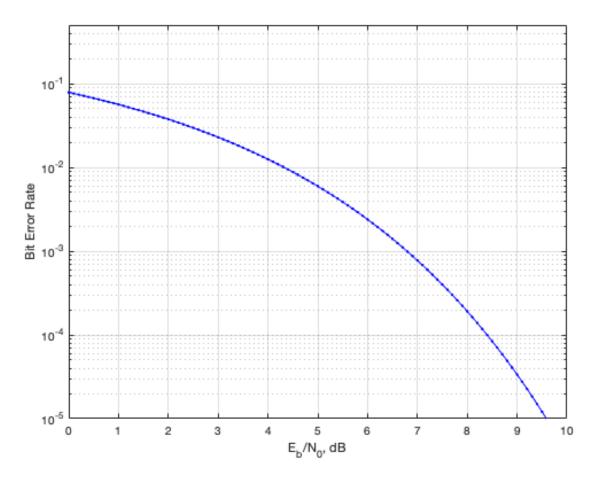


Рис. 9. График *BER* для оптимального приемника *BPSK*.

Для исследования был взят приемник, использующий 32 точки на символ. Приемник на основе нейросети показал большее значение вероятности ошибки в сравнении с оптимальным приемником при тех же отношениях сигнал/шум, что видно из графика, представленного на рис. 10. Так же кривая зависимости вероятности ошибки от отношения сигнал шум для приемника на основе нейросети, имеет более выраженный пороговый эффект.

2.4. Исследование работы радиоприёмника при воздействии гармонических помех

В компьютерной модели был сформирован сигнал с центральной частотой 1 МГц. Синусоидальная помеха действовала в полосе сигнала 200 кГц, на 30% от полосы – 60 кГц, 60% – 120 кГц и 90% – 180 кГц.

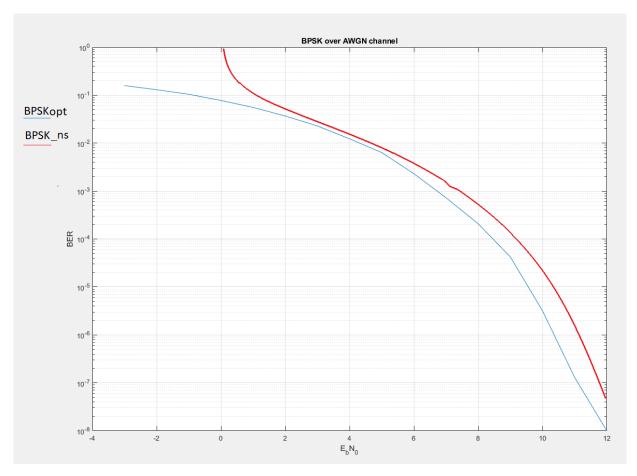


Рис. 10. График сравнения частоты битовых ошибок оптимального приемника *BPSK* сигнала и приемника с использованием нейросети.

Из зависимости, представленной на рис. 11 видно, что при возрастании мощности помехи частота ошибок возрастает. При приближении мощности помехи к мощности сигнала прием пропадает, вероятность ошибки становится равна 1. Также можно отметить, что при нахождении помехи ближе к несущей частоте, при том же отношении мощности помехи к мощности сигнала, вероятность ошибки выше. Исследование проводилось на скорости передачи информации 100 кб/с, для передачи информации была сформирована псевдослучайная последовательность «0» и «1» длинной 10⁸.

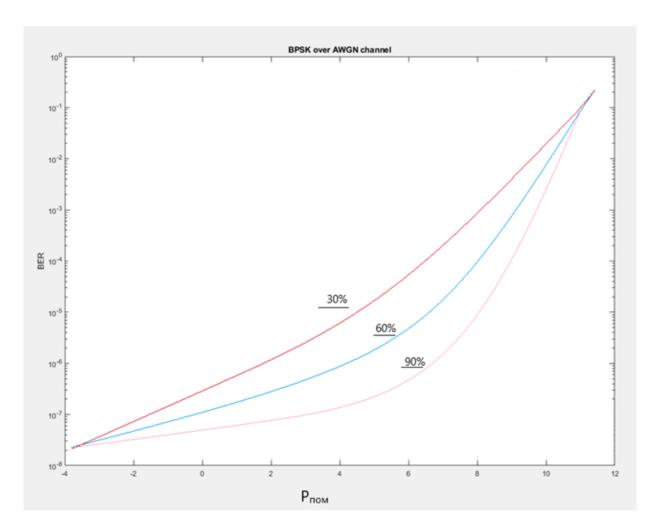


Рис. 11. Влияние мощности гармонической помехи на количество ошибок.

Заключение

Сформированная структура искусственной нейронной сети и реализованная в приёмнике с применением оборудования *National Instruments* стандарта *PXI* на основе многослойного персептрона после конфигурирования

сигнала для обучения и обучения нейронной сети позволила исследовать приёмник на помехоустойчивость при воздействии шумов. Полученные результаты показывают, что в сравнении с оптимальным приёмником, вероятность битовой ошибки у приёмника на основе нейронной сети выше. При ОСШ = 0 дБ $BER_{\text{опт. пр.}} = 10^{-1}$, $BER_{\text{нс}} = 10^{0}$. Работа приёмника при воздействии гармонических помех показала, что при увеличении мощности помехи, 10 вероятность ошибки возрастает _ при $P_{\text{пом}}$ дБ, $BER \rightarrow 100$, так же наглядно показано, что чем ближе помеха к несущей частоте, тем ВЕК становится выше.

Финансирование: исследование выполнено в рамках государственного задания ФГАОУ ВО Сибирский федеральный университет (номер FSRZ-2023-0008).

Литература

- 1. Бондарев, В.Н. Цифровая обработка сигналов: методы и средства / В.Н. Бондарев, Г. Трестер, В.С. Чернега. X.: Конус, 2001. 398 с.
- 2. Медведев В.С. Нейронные сети. МАТLAВ 6 / В.С. Медведев; под общей редакцией В.Г. Потемкина. М.: ДИАЛОГ-МИФИ, 2002. 496 с.
- Данилин, С.Н. Обеспечение точности функционирования нейросетевого устройства оценки параметров гармонических сигналов в радиосистемах / С.Н. Данилин, М.В. Макаров, С.А. Щаников // Радиотехнические и телекоммуникационные системы. 2014. № 3(15). С. 12-17. EDN QNQVSG.
- Алгоритм выбора параметров искусственной нейронной сети при оценке амплитуды гармонических сигналов с учетом дестабилизирующих воздействий / С.Н. Данилин, М.В. Макаров, С.А. Щаников, С.В. Пантелеев // Методы и устройства передачи и обработки информации. 2014. № 16. С. 70-73. EDN SAXTMH.
- 5. Рашид, Т. Создаем нейронную сеть / Т. Рашид; [перевод с английского]. СПб. : ООО «Альфа-книга», 2017. 272 с.

- Weidong, C. Neural network based demodulator for known binary baseband signal / C. Weidong, W. Tianbao, W. Zhan // 2009 International Conference on Information Technology and Computer Science. – IEEE, 2009. – T. 2. – C. 553-557.
- 7. Галушкин, А.И. Нейронные сети: основы теории / А.И. Галушкин. М.: Горячая линия-Телеком, 2010. 496 с.
- 8. Кузнецов, А.В. Применение нейросетевых методов для обработки сигналов в каналах с помехами: специальность 05.13.17 «Теоретические основы информатики»: диссертация на соискание ученой степени кандидата технических наук / Кузнецов Александр Владимирович ; Институт криптографии связи и информатики. Москва, 2000. 362 с.
- Lee, J. Reduced RBF Centers Based Multi-user Detection in DS-CDMA Systems / J. Lee, S. Ravi, J. Hwang // Advances in Hybrid Information Technology. – 2006. – Vol. 4413, P. 249-257.
- Даровских, С.Н. Обработка дискретных составных частотномодулированных сигналов посредством нейросетевого анализа / С.Н. Даровских, А.О. Головенко, Н.С. Никитин // Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника. 2015. Т. 15. № 3. С. 163-168. https://doi.org/10.14529/ctcr150321. EDN UAPVIF.
- 11. Zhao, R. An End-to-End Demodulation System Based on Convolutional Neural Networks / R. Zhao, J. Wang, J. Li // Journal of Physics: Conference Series. – IOP Publishing, 2021. – Vol. 2026. – №. 1. – P. 58302-58310.

Для цитирования:

Евстратько В.В., Коноваленко А.И., Мишуров А.В., Юхманов А.Д. Цифровой радиоприёмник на основе нейронной сети. // Журнал радиоэлектроники. -2024. -№. 1. https://doi.org/10.30898/1684-1719.2024.1.5