Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2024.1.9

 

The MODEL OF permittivity OF organomineral SOILS,

CONSIDERING MINERAL COMPOSITION

AND ORGANIC MATTER CONTENT

 

A.Yu. Karavayskiy, S.V. Fomin, Yu.I. Lukin

 

Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences

660036, Krasnoyarsk, Akademgorodok 50, bld. 38

 

The paper was received November 13, 2023.

 

Abstract. The single-frequency dielectric model of thawed and frozen forest soils in the root zone based on the refractive dielectric model was created, taking into account the influence of both the mineral and organic components of the soil mixture. The dielectric model was created on at 435 MHz the basis of the laboratory dielectric measurements of five soils with organic matter content in the range from 11.1 to 54.4 % and clay content from 21.1 to 40.9 %. Dielectric measurements were carried out in the range of the gravimetric moisture from the dry state to the lowest moisture capacity and in the temperature range from –30 to 25 . The coefficient of determination between the predicted and measured values for real and imaginary parts of the complex permittivity are 0.988 - 0.997 and 0.957 - 0.971, respectively. The normalized standard deviations in this case are 6 - 5.6 % and 20.2 - 21.2 % for real and imaginary parts of the complex permittivity, respectively. The developed dielectric model can be used in remote sensing algorithms of soil moisture retrieval of forest soils in the root zone from the data radar and radiometric.

Key words: dielectric model, moisture, temperature, organic soil, mineral soil, frozen soil, thawed soil.

Financing: the study was carried out within the state assignment of Kirensky Institute of Physics.

Corresponding author: Karavayskiy Andrey Yurievich, rsdak@ksc.krasn.ru

References

1. Depledge J., Lamb R., Lawler C. Caring for climate: a guide to the climate change convention and the Kyoto protocol //Climate Change Secretariat (UNFCCC): Bonn, Germany. – 2005.

2. Hallikainen M. T. et al. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations //IEEE Transactions on Geoscience and Remote Sensing. – 1985. – ¹. 1. – P. 25-34.

3. Dobson M. C. et al. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models //IEEE Transactions on geoscience and remote sensing. – 1985. – ¹. 1. – P. 35-46.

4. Peplinski N. R., Ulaby F. T., Dobson M. C. Dielectric properties of soils in the 0.3-1.3-GHz range //IEEE transactions on Geoscience and Remote sensing. – 1995. – Vol. 33. – ¹. 3. – P. 803-807.

5. Mironov V. L., Kosolapova L. G., Fomin S. V. Physically and mineralogically based spectroscopic dielectric model for moist soils //IEEE Transactions on Geoscience and Remote Sensing. – 2009. – Vol. 47. – ¹. 7. – P. 2059-2070.

6. Mironov V.L., Fomin S. V. Temperature dependable microwave dielectric model for moist soils // Progress in Electromagnetics Research Symposium. Electromagnetics Academy – 2009. – Vol. 1. P. 817–821.

7. Mironov V. L. et al. Generalized refractive mixing dielectric model for moist soils //IEEE transactions on Geoscience and Remote sensing. – 2004. – Vol. 42. – ¹. 4. – P. 773-785.

8. Fomin S. V. et al. Dielektricheskaya model' talykh i merzlykh organicheskikh pochv na chastote 1.4 GHz [Dielectric model of thawed and frozen organic soils at a frequency of 1.4 GHz] //Izvestiya vysshikh uchebnykh zavedeniy. – 2017. – Vol. 60. – ¹. 12/2. (In Russian)

9. Bobrov P. P., Kondrat'yeva O. V., Mustakova M. M. Vliyaniye soderzhaniya organicheskogo veshchestva v pochvakh na dielektricheskuyu pronitsayemost' v diapazone chastot 10 kHz 8,5 GHz [Effect of organic matter content in soils on dielectric constant in the frequency range 10 kHz - 8.5 GHz] //Sibirskiy aerokosmicheskiy zhurnal. – 2013. – ¹. 5 (51). – P. 95-97. (In Russian)

10. Bobrov P. P. et al. Diel'ko-vlazhnostnyye kharakteristiki pochvennykh obraztsov s razlichnym soderzhaniyem gumusa v santimetrovom i detsimetrovom diapazonakh [Diel-moisture characteristics of soil samples with different humus contents in the centimeter and decimeter ranges] //Yestestvennyye nauki i ekologiya. Yezhegodnik OmGPU. – 2001. – P. 3-7. (In Russian)

11. Mironov V. L., Kosolapova L. G., Fomin S. V. Validation of the soil dielectric spectroscopic models with input parameters based on soil composition //2007 IEEE International Geoscience and Remote Sensing Symposium. – IEEE, 2007. – P. 749-753.

12. Mialon A. et al. Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm //IEEE Transactions on Geoscience and Remote Sensing. – 2015. – Vol. 53. – ¹. 6. – . 3084-3094.

13. Mironov V. L. et al. Temperature-and texture-dependent dielectric model for frozen and thawed mineral soils at a frequency of 1.4 GHz //Remote Sensing of Environment. – 2017. – Vol. 200. – P. 240-249.

14. Mironov V. L., Savin I. V. Spektroskopicheskaya mnogorelaksatsionnaya dielektricheskaya model' talykh i merzlykh arkticheskikh pochv, uchityvayushchaya zavisimosti ot temperatury i soderzhaniya organicheskogo veshchestva [Spectroscopic multi-relaxation dielectric model of thawed and frozen arctic soils considering dependence on temperature and organic matter content] //Issledovaniye Zemli iz kosmosa. – 2019. – ¹. 1. – P. 62-73 (In Russian)

15. Bobrov P. P. et al. Spektroskopicheskaya model' dielektricheskoy pronitsayemosti pochv, ispol'zuyushchaya standartizovannyye agrofizicheskiye pokazateli [Soil Dielectric Spectroscopic Model Using Standardized Agrophysical Parameters] //Issledovaniye Zemli iz kosmosa. – 2008. – ¹. 1. – P. 15-23. (In Russian)

16. Mironov V. L., Kosolapova L. G., Fomin S. V. Physically and mineralogically based spectroscopic dielectric model for moist soils //IEEE Transactions on Geoscience and Remote Sensing. – 2009. – Vol. 47. – ¹. 7. – P. 2059-2070.

17. Wigneron J. P. et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms //Remote Sensing of Environment. – 2017. – Vol. 192. – P. 238-262.

18. Escorihuela M. J. et al. Effective soil moisture sampling depth of L-band radiometry: A case study //Remote Sensing of Environment. – 2010. – Vol. 114. – ¹. 5. – P. 995-1001.

19. Monerris A. et al. Soil moisture retrieval using L-band radiometry: Dependence on soil type and moisture profiles //2006 IEEE MicroRad. – IEEE, 2006. – P. 171-175.

20. Alemohammad S. H. et al. Characterization of vegetation and soil scattering mechanisms across different biomes using P-band SAR polarimetry //Remote Sensing of Environment. – 2018. – Vol. 209. – P. 107-117.

21. Carreiras J. M. B. et al. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions //Remote Sensing of Environment. – 2017. – Vol. 196. – P. 154-162.

22. Fomin S. V., Muzalevskiy K. Dielectric Model for Thawed Mineral Soils at a Frequency of 435 MHz //IEEE Geoscience and Remote Sensing Letters. – 2020. – Vol. 18. – ¹. 2. – P. 222-225.

23. Fomin S., Muzalevskiy K. A dielectric model for frozen mineral soils at a frequency of 435 MHz //Remote Sensing Letters. – 2021. – Vol. 12. – ¹. 9. – P. 944-950.

24. Savin I. V., Muzalevskiy K. V., Mironov V. L. A dielectric model of thawed and frozen Arctic organic soils at 435 MHz //Remote Sensing Letters. – 2022. – Vol. 13. – ¹. 5. – P. 452-459.

25. Karavayskiy A. Yu., Lukin Yu. I. Dielektricheskaya model' verkhnego organicheskogo sloya lesnykh pochv dlya chastoty 435 MHz [Dielectric Model of the Upper Organic Layer of Forest Soils for a Frequency of 435 MHz] // Issledovaniye Zemli iz kosmosa. 2023. Vol. 2023, ¹ 3. P. 81–96. (In Russian)

26. Agrokhimicheskiye metody issledovaniya pochv [Agrochemical methods of soil research] / Ed. Sokolov A. V. M.: Nauka, 1975. 656 p.

27. Sadovski A., Ivanova M. Transformation of soil texture schemes and determination of water-physical properties of soils //Eurasian Journal of Soil Science. – 2020. – Vol. 9. – ¹. 4. – P. 306-313.

28. Mironov V. L. et al. Method of retrieving permittivity from S12 element of the waveguide scattering matrix //2013 International Siberian Conference on Control and Communications (SIBCON). – IEEE, 2013. – P. 1-3.

29. Mironov V. L., De Roo R. D., Savin I. V. Temperature-dependable microwave dielectric model for an Arctic soil //IEEE Transactions on Geoscience and Remote Sensing. – 2010. – Vol. 48. – ¹. 6. – P. 2544-2556.

For citation:

Karavayskiy A.Yu., Fomin S.V., Lukin Yu.I. The model of permittivity of organomineral soils, considering mineral composition and organic matter content. // Journal of Radio Electronics. – 2024. – ¹. 1. https://doi.org/10.30898/1684-1719.2024.1.9 (In Russian)