Journal of Radio Electronics. eISSN 1684-1719. 2026. ¹1
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2026.1.14
DEVELOPMENT OF A SOFTWARE PACKAGE
FOR COMPARATIVE ANALYSIS OF AIRCRAFT GUIDANCE
ALGORITHMS BASED ON DIGITAL TERRAIN MAPS
L.D. Dorosinsky, A.A. Ponomarev
Ural Federal University named after the First President of Russia B.N. Yeltsin,
620002, Russia, Yekaterinburg, Mira str., 19
The paper was received December 1, 2025.
Abstract. The urgency of developing autonomous guidance systems for aircraft is due to the growing demands on their independence and reliability. Traditional inertial systems suffer from the accumulation of errors over time, and satellite navigation technologies (GPS, GLONASS) are vulnerable to electronic jamming, which critically limits their use in counteraction conditions. In this regard, methods using digital terrain maps are a promising area. The purpose of this work was to develop a specialized software package for comparative analysis of the accuracy and noise immunity of two guidance methods: the classical correlation-extremal algorithm (CEA) and an approach based on a fully connected convolutional neural network (FCN). In the course of the research, a modular software architecture was created, including a synthetic relief generator based on the Fourier filtering method, a convolutional neural network learning mechanism, and an algorithm for calculating correlation metrics. For user convenience, a graphical interface based on PyQt5 has been implemented, providing interactive control of experiment parameters and visualization of results. The experiments carried out using the complex allowed us to establish that the correlation-extremal algorithm retains an advantage with a minimum number of reference data, while the neural network approach demonstrates higher noise immunity and accuracy after training on representative samples. An inverse relationship was also revealed between the recognition accuracy and the value of the spatial correlation parameter of the relief for both methods. An important result is the creation of a universal software tool that allows for a comprehensive assessment of the effectiveness of guidance algorithms in various conditions and can be adapted to solve practical problems of autonomous navigation, opening up opportunities for research in the field of hybrid navigation systems.
Key words: software package, graphical interface, digital terrain model, synthetic terrain, correlation-extremal algorithm, convolutional neural network, aircraft guidance, autonomous navigation, algorithm comparison, Fourier filtering, noise immunity.
Corresponding author: Artem Alekseevich Ponomarev, artemp14@gmail.com
References
1. Sy`rokvash S. M., Mexeda V. I. Sistemy` upravleniya i navedeniya kry`laty`x raket i protivodejstviya im [Cruise missile control, guidance and counteraction systems]//Militaryarticle. http://militaryarticle.vibrokatok.by/nauka-i-voennaya-bezopasnost/2008/12107‑sistemy-upravlenija-i-navedenija-krylatyh-raket-I
2. Aranovich G. P., Mixajlin D. A. Upravlenie i navedenie samoletov i raket [Control and guidance of aircraft and missiles] //Moskovskij aviacionny`j institut. – 2013.
3. Shirshikov A. S., Pavlova Yu. A., Chul`myakov I. F. Primenenie sistem global`nogo pozicionirovaniya pri upravlenii dorozhny`m dvizheniem [Application of global positioning systems in traffic management] //Inzhenerny`j vestnik Dona. – 2016. – T. 43. – ¹. 4 (43). – S. 90. http://ivdon.ru/ru/magazine/archive/n4y2016/3858
4. Borisov N. N., Soloduxin M. Yu., Godunov A. I. Besplatformennaya inercial`naya navigacionnaya sistema na baze mikromexanicheskix datchikov v sostave tankovy`x upravlyaemy`x raket [Free-form inertial navigation system based on micromechanical sensors as part of tank guided missiles] //Izvestiya vy`sshix uchebny`x zavedenij. Povolzhskij region. Texnicheskie nauki. – 2024. – ¹. 3 (71). – S. 55-63.
5. Tolstikov A. S., Ushakov A. E. Protivodejstvie spufingu i povy`shenie pomexoustojchivosti apparatury` potrebitelya global`ny`x navigacionny`x sputnikovy`x system [Countering spoofing and increasing the noise immunity of consumer equipment of global navigation satellite systems] //Intere`kspo Geo-Sibir`. – 2018. – ¹. 9. – S. 319-327.
6. E.D. Belozyorova Issledovanie xarakteristik algoritma korrelyacionno-e`kstremal`noj navigacii dlya letatel`nogo apparata [Investigation of the characteristics of the correlation-extreme navigation algorithm for an aircraft] // Inzhenerny`j zhurnal: nauka i innovacii. 2023. ¹4. S. 1-14.
7. Steele A. PyQt5 Tutorial Documentation Release 1.0. – 2016.
8. Proxorenok N. A. python 3 i pyQt. Razrabotka prilozhenij [python 3 and PyQt. Application Development]. – BXV-Peterburg, 2012.
9. Borczova M. V. Modelirovanie zemnoj poverxnosti s negaussovy`m raspredeleniem vy`sot [Modeling of the Earth's surface with a non-Gaussian height distribution] //Novy`e informacionny`e texnologii v avtomatizirovanny`x sistemax. – 2012. – ¹. 15. – S. 121-129.
10. By`kov V. V. Cifrovoe modelirovanie v statisticheskoj radiotexnike [Digital modeling in statistical radio engineering]. – 1971.
11. A.A. Ponomarev, Dorosinskij L.D. Sravnenie korrelyacionno-e`kstremal`nogo i nejrosetevogo metodov navedeniya letatel`ny`x apparatov po cifrovy`m kartam rel`efa mestnosti [Comparison of correlation-extreme and neural network methods of aircraft guidance based on digital terrain maps]// Inzhenerny`j vestnik Dona. 2025. http://ivdon.ru/ru/magazine/archive/n11y2025/10531
12. Sergienko A. B. Cifrovaya obrabotka signalov [Digital signal processing]. – BXV-Peterburg, 2011.
13. E`li Stivens, Luka Antiga, Tomas Viman PyTorch. Osveshhaya glubokoe obuchenie [PyTorch. Highlighting Deep Learning]. – SPb.: Piter, 2022.
14. Fully Connected Layer vs. Convolutional Layer: Explained // Builtin http://builtin.com/machine-learning/fully-connected-layer
15. Belyakova A.Yu., Belyakov Yu.D., Zamyatin P.S. Reshenie zadachi raspoznavaniya ob``ektov i incidentov na fotomaterialax, poluchenny`x s bespilotny`x letatel`ny`x apparatov s ispol`zovaniem metodov glubokogo obucheniya [Solving the problem of recognizing objects and incidents on photographic materials obtained from unmanned aerial vehicles using deep learning methods] // Inzhenerny`j vestnik Dona. 2021. ¹5. http://ivdon.ru/ru/magazine/archive/n5y2021/6985
For citation:
Ponomarev A.A., Dorosinsky L.G. Development of a software package for comparative analysis of aircraft guidance algorithms based on digital terrain maps. // Journal of Radio Electronics. - 2026. - ¹. 1. https://doi.org/10.30898/1684-1719.2026.1.14 (In Russian)