Journal of Radio Electronics. eISSN 1684-1719. 2026. ¹1
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2026.1.15
Peak Sidelobe Level Reduction
in Regular MIMO Antenna Arrays via
Random Displacement of Element Positions
À.Î. Podkopayev, V.V. Artyushenko, Ì.À. Stepanov, V.S. Sokolov
Novosibirsk State Technical University,
630073, Russia, Novosibirsk, K. Marksa ave., 20
The paper was received October 30, 2025.
Abstract. A method for reducing the peak sidelobe level of regular MIMO antenna arrays is proposed and justified. The method is based on introducing random displacements of the actual transmitting and receiving array elements along two orthogonal Cartesian coordinates within the array plane. Such random perturbations destroy the diffraction maxima in the array factor, which determine the peak sidelobe level. It is shown that even small random displacements with a uniform probability distribution within the range of one operating wavelength can reduce the peak sidelobe level by more than 3 dB, while the main beamwidth and the average sidelobe level remain practically unchanged. It is also noted that when the displacement range exceeds approximately two operating wavelengths, the random component dominates the array configuration, which limits the achievable reduction in the peak sidelobe level.
Key words: antenna array, MIMO radar, radiation pattern, array factor, sidelobe level, mathematical modeling.
Corresponding author: Podkopayev Artemy Olegovich, podkopaev@corp.nstu.ru
References
1. Bergin J., Guerci J. R. MIMO radar: theory and application. – Artech House, 2018.
2. Fortunati S. et al. Massive MIMO radar for target detection //IEEE Transactions on Signal Processing. – 2020. – Vol. 68. – pp. 859-871.
3. Chernyak V. S. Multiposition radar systems based on MIMO radars //Advances in Modern Radioelectronics. – 2012. – ¹. 8. – pp. 29-47. [in Russian]
4. Li J., Stoica P. MIMO Radar Signal Processing. – 2009. https://doi.org/10.1002/9780470391488
5. Grove R. L. MIMO radar Systems and Algorithms – Imperfections and Calibration. – 2022.
6. Fishler E. et al. MIMO radar: An idea whose time has come //Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509). – IEEE, 2004. – pp. 71-78. https://doi.org/10.1109/NRC.2004.1316398
7. Bliss D. W., Forsythe K. W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution //The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. – IEEE, 2003. – Vol. 1. – pp. 54-59. https://doi.org/10.1109/ACSSC.2003.1291865
8. Alland S. W. et al. Virtual radar configuration for 2D array : U.S. Patent. 9869762. – 2018.
9. Chen Z. K. et al. Sparse antenna array design for MIMO radar using multiobjective differential evolution //International Journal of Antennas and Propagation. – 2016. – Ò. 2016. – ¹. 1. – Ñ. 1747843. https://doi.org/10.1155/2016/1747843
10. Skolnik M. I. Radar Handbook 3ed. – McGraw Hill, 2008
11. Shirman Ya. D. et al. Radioelectronic Systems: Fundamentals of Design and Theory. Handbook // Radiotekhnika. – 2007. – Vol. 512. [in Russian]
12. Podkopayev A. O. et al. The Simulation Model of the MIMO Radar Antenna Array //2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE). – IEEE, 2023. – pp. 580-585. https://doi.org/10.1109/APEIE59731.2023.10347624
13. Stepanov M. A. et al. MIMO Antenna Array With a Randomized Arrangement of Elements Providing Specified Directional Properties //IEEE Antennas and Wireless Propagation Letters. – 2025. https://doi.org/10.1109/LAWP.2025.3585276
14. Karasev A. S., Stepanov M. A. Effect of linear antenna array thinning on its directional pattern parameters //2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM). – IEEE, 2022. – pp. 97-100. https://doi.org/10.1109/EDM55285.2022.9855099
15. Official Website of the U.S. Federal Communications Commission (FCC). Available at: https://fcc.report/FCC-ID/ (accessed: 27.10.2025)
16. Pompei F. J. and Wooh S.-C. Phased array element shapes for suppressing grating lobes // J. Acoust. Soc. Amer., vol. 111, 2002, pp. 2040–2048.
17. Lin C.-H., Distributed subarray antennas for multifunction phased-array radar // M.S. thesis, Naval Postgraduate Sch., Monterey, CA, USA, 2003.
18. Feng B., Jenn D. C. Two-Way Pattern Grating Lobe Control forDistributed Digital Subarray Antennas // IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, October 2015, pp. 4375-4383.
19. Feng B. and Jenn D. C. Grating lobe suppression for distributed digital subarrays using virtual filling // IEEE Antennas Wireless Propag. Lett., vol. 12, 2013, pp. 1323–1326.
20. Chen W., Xu X., Wen S., and Cao Z. Super-resolution direction finding with far-separated subarrays using virtual array elements // IET Radar Sonar Navigat., vol. 5, no. 8, 2011, pp. 824–834.
21. Krivosheev Y. V., Shishlov A. V., Denisenko V. V. Grating Lobe Suppression in Aperiodic Phased Array Antennas Composed of Periodic Subarrays with Large Element Spacing // IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, February 2015, pp.76-85.
22. Korn G. A., Korn T. M. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. – Courier Corporation, 2000.
23. Levin B. R. Theoretical Foundations of Statistical Radio Engineering. Vol. 1 – Moscow: Sovetskoye Radio, 1966. – 728 p. [in Russian]
24. Levin B. R. Theoretical Foundations of Statistical Radio Engineering. Vol. 2 – Moscow: Sovetskoye Radio, 1968. – 504 p. [in Russian]
For citation:
Podkopayev A.O., Artyushenko V.V, Stepanov Ì.À., Sokolov V.S. Peak sidelobe level reduction in regular MIMO antenna arrays via random displacement of element positions. // Journal of Radio Electronics. – 2026. – ¹. 1. https://doi.org/10.30898/1684-1719.2026.1.15 (In Russian)